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ABSTRACT
A semanticmodel of a data source is a representation of the concepts

and relationships contained in the data. Building semantic models

is a prerequisite to automatically publishing data to a knowledge

graph. However, creating these semantic models is a complex pro-

cess requiring considerable manual effort and can be error-prone.

In this paper, we present a novel approach that efficiently searches

over the combinatorial space of possible semantic models, and ap-

plies a probabilistic graphical model to identify the most probable

semantic model for a data source. Probabilistic graphical models

offer many advantages over existing methods: they are robust to

noisy inputs and provide a straightforward approach for exploit-

ing relationships within the data. Our solution uses a conditional

random field (CRF) to encode structural patterns and enforce con-

ceptual consistency within the semantic model. In an empirical

evaluation, our approach outperforms state of the art systems by

an average 8.4% of F1 score, even with noisy input data.

CCS CONCEPTS
• Information systems → Information integration; • Com-
putingmethodologies→ Learning in probabilistic graphical
models.
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1 INTRODUCTION
There is an enormous number of data sources available on the

web. Integrating information from multiple data sources enables

interesting applications that can have a large social impact [27].

However, because data publishers usually publish data in different

data formats and using different conventions, harvesting informa-

tion can be challenging. The task of semantic modeling addresses
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this challenge by building a model that maps the information found

in data sources to semantically meaningful structures.

A semantic model is a graph where ontology classes and source

attributes are nodes and ontology properties are edges. Figure 1

depicts a semantic model for a sample data source about artworks,

which contain information about paintings, their creators and sit-

ters. By explicitly encoding the semantic type and relationship

between source attributes in the graph, the model precisely de-

scribes the intended meaning of the data source. Moreover, it can

be used to automatically generate R2RML rules to transform the

data source to RDF triples for publishing to knowledge graphs

[7, 25].

Since creating semantic models, or semantic modeling, requires

significant effort and expertise, it is desirable to have an automated

or semi-automated system to support users. There is previous work

in predicting the semantic types of source attributes [18, 20, 22],

called semantic labeling. A semantic type is a pair of ontology class

and predicate. For instance, in Figure 1, the semantic type of at-

tribute name is ⟨aac:Person,Gr2:name⟩. However, semantic labeling

alone is insufficient for describing and publishing data as RDF be-

cause it fails to capture the relationships between attributes. Other

work focuses directly on semantic modeling [29, 30]. The state-of-

the-art methods use predicted semantic types of source attributes

from semantic labeling systems, then build a minimum-weighted

tree (Steiner Tree) that connects the attributes together. Heuristic

functions and other machine learning methods, such as frequent

pattern mining, are used to assign cost to edges of the tree.

Generating semantic models automatically still remains challeng-

ing for several reasons: the data of attributes may be very similar,

and there is more than one possible relationship between entities.

For example, it is easy to confuse a date attribute with created date

of paintings or creators’ birth date. If we simply look at one signal

from the cost of the edge, it would be hard to decide which one is

correct because they are similar. However, there are also multiple

weak signals from its relationships with other remaining attributes

that can assist our decision making. For instance, if we group values

of date attribute by painting id and find that one painting appears

to have been painted at two different points in time, then it is likely

that this date attribute is not the created date.

To address these issues, we present a new approach for semantic

modeling that uses a probabilistic graphical model (PGM). A PGM

allows us to express and capture the weak signals within the data.

From a set of known semantic models, we auto-generate positive

and negative examples representing many possible descriptions of

sources. Using this training set, the PGM is trained to distinguish

between good and bad models. To predict the most probable se-

mantic model for a data source, we use beam search to explore the
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Figure 1: NPG data source and its semantic model

space of possible models and evaluate the likelihood of the model

using the trained PGM as a scoring function.

The contribution of this paper is a novel way to explore relation-

ships within data sources and semantic models using a PGM, as

well as a flexible framework that can easily be extended to incorpo-

rate new features. We present experimental results on two museum

datasets published in Taheriyan et al. [29]. In the experiments, we

control different levels of noise by using four different semantic

labeling methods. These experiments show that our approach out-

performs state-of-the-art systems by an average of 8.4% F1 score,
even with noisy input data.

2 MOTIVATING EXAMPLE
In this section, we provide an example to describe the typical pro-

cess of building a semantic model for a sample data source of the

National Portrait Gallery (NPG
1
) museum in Figure 1. On top of

the table is a semantic model of the NPG. The source attributes are

data nodes or leaf nodes. The ontology classes are class nodes, and

links between nodes are ontology predicates. We also say that links

between two class nodes are class links. Additionally, data links are

links between class nodes and data nodes. For example, aac:Person
and aac:CulturalHeritageObject are class nodes, while the source at-
tributes title and classification are data nodes. The ontology classes

and predicates are from DCTerms, SKOS, ElementsGr2, AAC, EDM

ontologies
2
.

The first step in building a semantic model is semantic

labeling. A user or an automated semantic labeling sys-

tem annotates each source attribute with semantic types.

For example, the attributes title and image are labeled as

⟨aac:CulturalHeritageObject, dcterms:title⟩, ⟨edm:WebResource,
karma:classLink⟩, respectively. Note that we use a special predicate
karma:classLink to indicate that the data node image contains URIs
of edm:WebResource.

The second step is specifying relationships between nodes in the

model. This is a complicated problem, as there are several paths to

1
http://npg.si.edu/home/national-portrait-gallery

2
These ontologies are used in the evaluation datasets

connect two nodes in the domain ontology. For instance, aac:Person
can be dcterms:creator or aac:sitter of aac:CulturalHeritageObject.
Another example is that bornDate and artistBornDate do not belong
to same person. If we only know the scores of semantic types of

attributes and how frequent a predicate is used to connect two class

nodes, we may not know which path is correct.

When users model a data source, they use various information

to make decisions. For example, in Figure 1, we have three people

who are listed under attribute name and are in the “Apollo 11 Crew”

painting. As a painting is usually painted by one individual, a person

would conclude that these are the names of the sitters rather than

the names of the creators. Attributes artist and ArtistBornDate are
two columns next to each other. This is weak evidence indicating

that the two columns contain the name and birth date of a person.

If the bornDate is mislabeled as death date of aac:Person, we would
be skeptical about having Eastman Johnson draw a painting of

Chester A. Arthur when he was 5 years old. Although these signals

are useful, they are not always strong and correct. Can we learn to

combine and apply the signals to build a correct semantic model?

3 PROBABILISTIC GRAPHICAL MODELS FOR
SEMANTIC MODELING

Our problem of learning semantic models is defined as follow:

suppose we have a set of domain ontologies O, a set of sources

{s1, s2, ..., sn } and their semanticmodels {sm(s1), sm(s2), ..., sm(sn )}.
Given a target source s (a1,a2, ...,an ), in which ai is a source at-

tribute, we want to automatically build its corresponding semantic

model sm(s ).
Our approach for building semantic models is similar to the

procedure humans use. We model source attributes one at a time.

For every attribute, we rank its modeling options based on the

likelihood of the overall semantic model. Then, we select the at-

tribute that has the highest rank. The process ends when there is

no attribute left.

As we have discussed, users can exploit multiple signals to assist

their decisions. For example, in Figure 1, given two options for

relation ⟨n1_CulturalHeritaдeObject , n4_Person⟩: dcterms:creator
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Figure 2: A example of integration graph3. This is built from
sm(npg) and sm(met). Some nodes and properties are hidden for readability.

and aac:sitter, users can use the fact that name of n4_Person is

linked to the attribute artist to select predicate dcterms:creator over
aac:sitter. Those signals are often collective and structural. They

can be captured and represented naturally using a PGM, which is

a very powerful framework that captures dependencies between

relations and is robust to noise.

In Section 3.1, we describe the procedure to build a semantic

model using search. We then explain how we apply and train a

PGM as a ranking function in Section 3.2 and 3.3.

3.1 Searching for semantic models
Let D0 = sm({}) be a start state which is an empty model, f : D0 →

D1 be a transition function to move from one state to another state

by adding one source attribute. Then, in general, constructing a

semantic model can be solved using search algorithms by repeatedly

invoking the transition function f until we reach the goal state, a

tree connecting all source attributes.

Algorithm 1: TransitionFunction
Input: A search state: st

A set of source attributes: A = {a0, ...,an }
An integration graph: Gint

Output: List of next search states

1 nextStates← []

2 A′← A \ st .leafNodes
3 for ai ← A′ do
4 trees← MergeIntoTree (st , Gint, ai )

5 for st+1 ← trees do
6 nextStates.append(st+1)

7 return nextStates

The transition function we use is defined in algorithm 1. We

start with each unmerged attribute (line 2 - 3) and generate next

states by merging them into current state (line 4). Algorithm 2 is

used to combine an attribute with the current semantic model. The

intuition of algorithm 2 is that we find all possible connecting paths

between source attribute and leaves or root of the tree. Each path

with a current tree forms a new state we want to generate.

3
This example is based on an example from [29]

Figure 3: Two possible paths to add title attribute into cur-
rent tree

To find the paths connecting source attribute and the existing

tree, we use an integration graph from Taheriyan’s work [29]. An

integration graph is a directed weighted graph built from known se-

mantic models, and represents a space of plausible semantic models

we have seen in the training data. In Figure 2, we show an inte-

gration graph built from two data sources npg and met. Each link

is annotated with its source name to specify where it comes from.

When the graph is used in prediction, it is expanded by adding

semantic types depicted in blue color. For example, in a new data

source table, we have a column called dimensions tagged with a

semantic type ⟨aac:CulturalHeritageObject, dcterms:extent⟩, we add
one data node n15 and one link dcterms:extent from n4 to n15. How-
ever, we do not need to update node n1 because we have already
had link (n1, dcterms:extent, n13).

Now given an integration graph Gint = {Vint ,Eint }, suppose
that we are in the state st that we have four nodes {n1,n5,n7,n8}
as in Figure 3 and we want to merge attribute at = title. First, we
need to align at to nodes in Vint that have same semantic type

(line 2 in algorithm 2). The two nodes that match are n12 and n11.
For each node, we find all paths that connect the node to st , each
path generates different tree. For example, there are two paths

(n1 → n12) and (n1 → n4 → n11). Therefore, we have two next

states. Each next state will be a tree that combines st and a merge

path.

Algorithm 2:MergeIntoTree

Input: A search state: st
An integration graph: Gint
An attribute: at

Output: List of trees which contain the given attribute at
1 newTrees← []

2 mntPts← Gint .findAttribute(at .semanticType)

3 for mntPt← mntPts do
4 connectedPaths← all paths that connect leaves or root of

st with mntPt
5 for path← connectedPaths do
6 newTree← merge mntPt to st using path
7 newTrees.append(newTree)

8 return newTrees

In addition to using the transition function in the beam search,

we can also use it in interactive semantic modeling systems such as

Karma [11]. In particular, from a current curated semantic model,

the transition function is invoked to generate all semantic model
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candidates. Then, the candidates are ranked using a scoring function

to produce the top-k candidates for users to choose from. A user can

also make corrections if there is no suitable option. In our approach,

the scoring function directly affects the quality of our predicted

semantic models. In the next section, we will describe how we use

PGM to learn a scoring function.

3.2 Using Graphical Models as the score
function

A probabilistic graphical model (PGM) is a well-known and effec-

tive framework to represent a probability distribution of random

variables [13]. In order to apply PGMs in semantic modeling, we

choose two kinds of random variables: input variables x that are

links between nodes in a semantic model, and output variables y
that are labels of the links. A label of a link has possible values

inV = {true, false}. A link with label true means it is correct and

present in the gold semantic model. Since we are interested in

predicting labels of links: P (y |x ), it is natural to use a conditional

random field (CRF). In particular, our standard CRF has following

form:

P (y |x ) =
1

Z (xc )

∏
Cp ∈C′

∏
Ψc ∈Cp

Ψc (yc ,xc ;θp )

Z (xc ) =
∑
y

∏
c ∈C ′

∏
Ψc ∈Cp

Ψc (yc ,xc ;θp )

where Ψc (yc ,xc ;θp ) is a factor function that takes two set of vari-

ables yc and xc with parameters θp , and Z (xc ) is a partition func-

tion acted as a normalization factor to ensure the distribution P (y |x )
sum to 1. The factors that have same input structure are grouped

into C′ = {C1,C2, ...,Cn }, where each Ci is a set of factors called
clique template [26]. Factors in a clique template Cp share same

parameters θp . A common choice of factor functions is exponential

function, and each factor is log-linear with a set of feature functions

f as follows:

Ψc (yc ,xc ,θp ) = exp




∑
k

θpk fpk (yc ,xc )



To simplify the notation, for every equation, x or y refers to

one random variable, and x or y (bolded) refers to sets of random

variables. Additionally, x and y symbols are used to denote input

and output of a same link, respectively. For a complete guide about

CRF, readers can refer to Sutton et al. [26].

Our ultimate goal is to construct a semantic model where all

links are true. So the likelihood of the model being correct is P (∀y ∈
y;y = true|x ), and can be used as a score function for ranking. With

the CRF framework above, in the following subsections, we will

describe different clique templates and their features, each capture

different relations between data sources and semantic models.

3.2.1 Link between nodes. These are factors over one link repre-

senting the likelihood of the link being correct or not. In particular,

the factors have this form: Ψ(y,x ). The first feature of the factor is
the confidence score of a semantic type, which is one of the outputs

from the semantic labeling step. The features are defined as:

f SSi j (y,x ) = 1{y=i }1{st (x )=j }st_score(x );∀i ∈ V, j ∈ ST

f SSi j (y,x ) = 1{y=i }1{st (x )=j } (1 − st_score(x ));∀i ∈ V, j ∈ ST

where 1{∗} is an indicator function, ST is set of all possible seman-

tic types, st (x ), st_score (x ) are the semantic type and confidence

score of link x , respectively. These are typical features used in

graphical models, where each feature has its own weight and is

non-zero only when a particular condition is met.

Note that if we only use f SSi j (y,x ), then Ψ(y = true,x ) − Ψ(y =

false,x ) = st_score(x ) (θtrue, j − θfalse, j ), then Ψ(y = true,x ) >
Ψ(y = false,x ) is independent of st_score(x ) but only weights of

the features. By introducing f SSi j (y,x ), we are able to assign higher

energy to Ψ(y = true,x ) when confidence score is high, and higher

energy Ψ(y = false,x ) when confidence score is low (assuming that

the higher confidence score, the more chance y is true). The simple

and yet efficient technique above is applied to many other signals

which have continuous value in this paper.

The confidence score signal is only applied for data links. For

class links, we estimate the probability of a link being correct as

follows:

P (s,x ,o) = P (s ) ∗ P (o) ∗ P (x |s,o)

P (x |s,o) =
count (s,x ,o)

count (s,o)

where s, o are source node and target node of a link x in the semantic

model, respectively. In the equation, the probability of nodes P (s )
and P (o) are estimated using a logistic regression (LR) model, which

is trained on the same training set of our graphical model. The

intuition of two features used in the LR model is described below:

• Total confidence score of semantic types of all child data

nodes of n: a class node is likely to be present in the model

if it links to many data nodes.

• The merging cost of node n with another node n′ that has
the same label in the graph: two class nodes with disjoint

sets of properties should be merged together to simplify the

model.

Features of class links are defined similar to f SSi j as follow.

f CLi j (y,x ) = 1{y=i }1{triple(x )=j }P (triple(x ));∀i ∈ V, j ∈ T

f CLi j (y,x ) = 1{y=i }1{triple(x )=j } (1 − P (triple(x )));∀i ∈ V, j ∈ T

where triple(x ) = (s,x ,o), T is set of all triples.

Beyond the two features above, we also use other features which

depend mostly on x . To define these features, we define a series of

observation functions ot (x ). The corresponding features have the
form:

f LOit (y,x ) = 1{y=i }ot (x );∀i ∈ V
The set of observation functions we used are listed in table 1.

3.2.2 Cardinality relationships. The cardinality constraint between
two source attributes can be used to discover an incorrect model.

For example, a painting should have only one primary title, i.e the

id and primary title of a painting have a one-to-one relationship. If

we observe that the relationship is one-to-many, then one of the

properties is linked to the wrong attribute. We express the heuristic
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Table 1: Observation functions used in factor of link of
nodes

Features Explanation

Delta_SS(x=j)

∀j ∈ ST
Difference between score of current seman-

tic type and the remained best semantic

type

SS_rank(x) Rank of a predicted semantic type (deter-

mined by semantic labeling method

P(x|s) Frequency of a link x given its source node

s

NoDataChild The source node has only child class nodes

NoSiblings The source node has only one child node

Prior Prior probability of a link

above using factors between two outgoing links of class nodes x1
and x2: Ψ(y1,y2,x1,x2).

Cardinality relationship between attribute a2 and attribute a1 is
computed by averaging the number of unique values of a2 grouped
by a1. If the average number is greater than a threshold α = 1 +

|ϵ |, ϵ ⪆ 0, we consider this to be either a one-to-many or a many-to-

many relationship, otherwise, it is a one-to-one relationship. The

threshold is chosen to be slightly greater than 1 in order to make

this feature robust to noise in the data source (e.g., missing values).

In particular, α is set to 1.05 based on experimental results. For

example, in Figure 1, the cardinality of attribute name and attribute
ref is CRD (ref, name) = 1-to-many because

1+3+1
3
= 1.67 > α . If

two attributes belong to two separate nested lists, which occurs

infrequently, we do not compute its cardinality relationship and

set it to NULL. The cardinality features of this clique template are

defined as:

f CRDi jkmn (y1,y2,x1,x2) =1{y1=i }1{y2=j }1{st (x1 )=k }1{st (x2 )=m }
1{CRD (x1,x2 )=n }

;∀i, j ∈ V,k,m ∈ ST ,n ∈ CRD

where CRD = {many-to-many, 1-to-many, 1-to-1,NULL}.

3.2.3 Properties co-occurrence. This clique template gives a boost

to properties that are likely to occur together. For example, birth

date and death date of an artist have higher co-occurrence than

birth date and creation date of a painting. If we have two dates

attributes, the chance of their being birth date and creation date

will be lower than the chance that they are birth date and death

date.

A co-occurrence frequency matrix is estimated from known

semantic models and are used as features in this clique template:

f OCCi jmn (y1,y2,x1,x2) =1{y1=i }1{y2=j }1{st (x1 )=m }1{st (x2 )=n }
co_occurrence(x1,x2)

;∀i, j ∈ V,m,n ∈ ST

f OCCi jk (y1,y2,x1,x2) =1{y1=i }1{y2=j }1{st (x1 )=m }1{st (x2 )=n }
(1 − co_occurrence(x1,x2))

;∀i, j ∈ V,m,n ∈ ST

where x1 and x2 are sibling links of a class node.

Figure 4: Excerpt from semantic models of the JANM,
OMCA4 and NPG data sources

3.2.4 Duplicated properties. An entity usually has many proper-

ties, but a few of them are duplicated. An example of a duplicated

property is a class node Person with two links worksFor to two

data nodes organization1 and organization2. As semantic labeling

systems often output the same semantic types for similar attributes,

knowing which properties could be duplicated helps us identify

incorrect links.

Factors in this clique template take a set of same label outgoing

links of a class node and have the following features:

f DPi0 (yt ,xt ) = 1{ | {∀yi ∈yt |yi=true} |=1}1{st (xt )=i } ;∀i ∈ ST

f DPi1 (yt ,xt ) = 1{ | {∀yi ∈yt |yi=true} |>1}1{st (xt )=i } ;∀i ∈ ST

3.2.5 Grouping properties. In hierarchical data sources, properties

of an entity are usually grouped under the same nested object. For

example, birth date and name of person are properties of the artist
object and artist is in a record object in a data source: {“artist”:

{“birth_date”: “..”, “name”: “..”}, “title”: “..”}.

Let SameScope(x1,x2) be a function of two sibling links that

output true if their target data nodes are under the same nested

object and false otherwise. Then, the features of this clique template

are defined as:

f GPi j (y1,y2,x1,x2) = 1{y1=i }1{y2=i }SameScope(x1,x2);∀i, j ∈ V

f GPi j (y1,y2,x1,x2) = 1{y1=i }1{y2=i }¬SameScope(x1,x2);∀i, j ∈ V

3.2.6 Structural similarity. There are many possible ways to link

two class nodes. Class nodes involved in the same relationship often

connect to a similar set of data nodes. For example, in Figure 4,

Concept nodes n2, n5 and n8 link with CulturalHeritageObject nodes
via the predicate hasType have similar values, which are types of art-

works.WhileConcept nodesn3 andn6 involved in different relations
(dcterms:subject) contain values about subjects in artworks. This

heuristic can be used to predict the likelihood of links between class

nodes. In particular, we define factor functions taking two links x1
and x2, which are class link and data link, respectively. The input x1
and x2 form a substructure. We say two substructures are partially

matched if they both have the same link x2. For example, in Figure 4,

4
http://www.janm.org/ and http://museumca.org/
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Figure 5: Example of a gold model and predicted model. The
gold model is on the left side and the other is the predicted model. The green

lines in the predicted model show correct links and red ones are incorrect

links.

we have two substructures: s1 = ⟨CulturalHeritageObject, hasType,
Concept, prefLabel, classification⟩ and s2 = ⟨CulturalHeritageObject,
subject,Concept, prefLabel, classification⟩, in which s2 and s1 are

partially matched.

The likelihood of a substructure is the maximum similarity score

between its source attribute with other source attributes of other

identical substructures in the training set. The reward of the sub-

structure, Reward(x1,x2), is defined to be the difference between

the likelihood of current substructure with the highest likelihood

of other partial matched substructures. For example, in Figure 4,

assuming the similarity score between attribute classification and

attributes technique_type, subject_tags, type_of_art, keywords are
0.7, 0.5, 0.8, 0.2, respectively. Then, the likelihood of substructure

s1 =max (0.7, 0.8) = 0.8, and the likelihood of substructure s2 = 0.5.

The reward of the substructure s1 = 0.8 − 0.8 = 0 while reward of

s2 = 0.5 − 0.8 = −0.3. Hence, our CRF will prefer s1 to s2.
Using Reward(x ,y) function, the features of this clique template

are defined as follow:

f SrSi j (y1,y2,x1,x2) = 1{y1=i }1{y2=i }Reward(x1,x2);∀i, j ∈ V

f SrSi j (y1,y2,x1,x2) = 1{y1=i }1{y2=i } − Reward(x1,x2);∀i, j ∈ V

3.2.7 Error propagations. The factors of this clique template are

used to remove class nodes in which all of their outgoing links

are labeled false because they are redundant. In particular, the

factors need to output high energy when all links of a class node

are incorrect, and low energy when all of the outgoing links have

label false but the incoming link is labeled true. Features of this
clique template are defined as follow:

f EPi (y0,yc ,x0,xc ) = 1{y0=i }1{y=false;∀y∈yc } ;∀i ∈ V

where x0 is the incoming link, xc are the outgoing links.

3.3 Training the Graphical Model
To train the graphical model, beside positive examples obtained

from set of known semantic models, we also need negative exam-

ples. A typical approach to generate more training data is collecting

generated semantic models from the search procedure. Then, ev-

ery link in the generated models is labeled true or false using an

automated labeling procedure.

3.3.1 Auto-label examples. Define rel(sm) is a set of triples (u, e , v)
of semantic model sm, in whichu,v is a source node and target node

of a link e , respectively. The labeling procedure works as follow.

First, we find the best mapping from node in the predicted model

sm′ to node in known model sm such that it maximizes the number

of overlapped triples between rel(sm) and rel(sm′). For example, in

Figure 5, if the mapping is {n1 → v2,n2 → v1,n3 → v3,n4→ v4},
we have 1 overlapping triple ⟨Artwork, dcterms:title, Titleofartwork⟩.
If we switch the mapping between two nodes n1 and n2, we have 2
overlapping triples and this is the best mapping we can have. After

the alignment step, each link e in predicted model sm′ is assigned a
true label if its triple (u, e,v ) is in rel(sm); otherwise, it is assigned

false.
3.3.2 Generate training examples.

Algorithm 3: EliminateDataNodes
Input: A gold semantic model: sm
Output: List of new semantic models in which some data

nodes have been removed

1 startStates← []

2 smnew ← remove data nodes in sm, which semantic labeling

doesn’t predict their semantic types correctly

3 for u← smnew.dataNodes do
4 for stype← PredictedSemanticTypes (u) do
5 Vmatch ← all the data nodes have semantic type stype
6 if |Vmatch | = 0 then
7 state← remove u out of smnew

8 add state to startStates

9 for v← Vmatch do
10 if u is not v then
11 state← remove u and v out of smnew

12 add state to startStates

13 return startStates

To make the process of generating training examples efficient,

instead of starting from an empty semantic model, we start from a

known semantic model, remove some data nodes, then invoke the

search algorithm in Section 3.1 to add back the removed attributes.

The algorithm 3 describes how we remove data nodes. The goal is

instead of removing random nodes, we remove the nodes that have

same semantic types, so that when we add back a data node, there is

alwaysmore than one possible waywe canmerge the data node into

the model, hence generate a hard example for our graphical model

to learn. For example, in Figure 1, suppose that we are removing the

attribute artist, and artist is taggedwith two possible semantic types:

⟨CulturalHeritageObject, title⟩ and ⟨Person, name⟩. After removing,

we have two started states: the first one is the graph missing the

links ⟨n1_CulturalHeritageObject, title⟩ and ⟨n4_Person, name⟩, the
second state is omitting the links ⟨n4_Person, name⟩ and ⟨n5_Person,
name⟩.

Note that as there are many possible examples that can be gen-

erated, each example is associated with a score computed using

Taheriyan et al. [29] method, then we randomly sample the exam-

ples using the score to reduce the number of training examples.

In our experiments, the number of examples is set to 300 per gold

semantic model.
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Figure 6: Factor graphs before and after eliminating cycles.
In the factor graphs, we omit random variables x because their values are

fixed.

3.3.3 Inference and Parameter Learning. We perform exact infer-

ence on CRF using Belief Propagation [26]. Undirected graphical

models are often represented as factor graphs in which random

variables and factor functions are nodes. An edge is drawn between

a random variable and a factor if the variable is input of the factor

function. Since we can only apply Belief Propagation to acyclic

factor graphs, we eliminate cycles in our factor graphs by merging

cliques which form cycles into single cliques. With the choices of

factors in Section 3.2, we only need to merge factors, whose inputs

are incoming links and/or outgoing links of same class nodes. For

example, in the factor graph in Figure 6, the graph becomes acyclic

after the four factors Ψ4 to Ψ7, which form cycles, are merged and

replaced by a new factor:

Ψ8 (y1,y2,y3,x1,x2,x3) =Ψ4 (y1,y3,x1,x3)Ψ5 (y2,y3,x2,x3)

Ψ6 (y1,y2,x1,x2)Ψ7 (y1,y2,y3,x1,x2,x3)

The problemwith this approach is that the merged factors may have

many variables, which results in the number of values ofy we need

to enumerate increasing exponentially with n: 2n , where n = |y |.
Fortunately, it is not common to have a class node containing too

many properties. In order to ensure the inference algorithm has

reasonable runtime, we could control the number of variables in

the factor by keeping top n′ < n most frequently used predicates.

In the experiments, we set n = 11 so there are only maximum 2048

combinations of y values.

Our CRF is trained using the standard maximum log-likelihood

and Belief Propagation. For more details about Belief Propagation

and training CRF, readers can refer to the tutorial in Sutton et

al. [26].

4 EXPERIMENTAL EVALUATION
4.1 Dataset and experimental setup
Our objective is to assess the ability of our method to infer cor-

rect semantic models with and without noisy data. We evaluate

our approach, which is called PGM-SM, on two different datasets:

dsedm and dscrm from Taheriyan et al. [29]. Both datasets contain

Table 2: The evaluation datasets dsedm and dscrm

dsedm dscrm

#data sources 28 28

#classes in domain ontologies 119 147

#properties in domain ontologies 351 409

#nodes in the gold-standard models 444 970

#data nodes in the gold-standard models 310 552

#class nodes in the gold-standard models 134 418

#links in the gold-standard models 416 942

Table 3: MRR scores of three semantic labeling methods

Datasets DSL Serene SemTyper

dsedm 0.886 0.912 0.830

dscrm 0.896 0.910 0.628

data sources from different art museums in US, and in different

data formats (CSV, XML, JSON, etc). However, domain experts use

two different well-known data models in the museum domain: Eu-

ropeana Data Model (EDM), and CIDOC Conceptual Reference

Model (CIDOC-CRM) for knowledge representation. The details

of two datasets are listed in Table 2. Note that we updated the se-

mantic models in the ground-truth datasets to fix some mistakes

based on the recommendation
5
from domain experts [12]. The up-

dated datasets, experimental results and our code are available on

Github
6
.

Semantic labeling methods are evaluated using standard mean

reciprocal rank (MRR) [5]. We assess the quality of predicted se-

mantic models by comparing with gold semantic models in term of

precision and recall as in Taheriyan et al. [29]:

precision =
|rel (sm) ∩ rel ( f ∗ (sm′)) |

|rel ( f ∗ (sm′)) |

recall =
|rel (sm) ∩ rel ( f ∗ (sm′)) |

|rel (sm) |

f ∗ = argmax

f
|rel (sm) ∩ rel ( f (sm′)) |

where rel (sm) is a set of triples (u, e,v ) of a semantic model sm,

f is a mapping function that maps nodes in sm′ to nodes in sm
(Section 3.3.1).

In our experiments, we use half of the dataset for training and the

other half for testing. We repeat the process by three times (3-folds)

and average the results. Parameters of our CRF are learned using

the ADAM-AMSGRAD optimization method [21] for 60 epoches

with batch size 200 and learning rate 0.05. Our experiments are run

on a single machine with Intel Xeon E5-2620 v4 and 32GB RAM.

4.2 Automatic semantic modeling
In this experiment, we evaluate our method on four different se-

mantic labelers: SemTyper [20], DSL [18], Serene [22] and Oracle.

5
The recommendation documentation can be found at: http://review.

americanartcollaborative.org/

6
https://github.com/binh-vu/semantic-modeling

1950

http://review.americanartcollaborative.org/
http://review.americanartcollaborative.org/
https://github.com/binh-vu/semantic-modeling


Table 4: Performances of semantic modeling systems with respect to different semantic labelers

Datasets Labelers

Precision Recall F1

Taheriyan Serene PGM-SM Taheriyan Serene PGM-SM Taheriyan Serene PGM-SM

dsedm

SemTyper 0.726 0.689 0.772 0.702 0.701 0.767 0.712 0.693 0.768

DSL 0.656 0.708 0.812 0.618 0.734 0.820 0.635 0.719 0.815

Serene 0.808 0.777 0.822 0.800 0.803 0.837 0.803 0.789 0.829

Oracle 0.883 0.876 0.945 0.892 0.896 0.927 0.887 0.885 0.935

dscrm

SemTyper 0.695 0.710 0.809 0.559 0.624 0.660 0.618 0.663 0.725

DSL 0.699 0.714 0.851 0.693 0.687 0.839 0.695 0.698 0.844

Serene 0.779 0.736 0.886 0.770 0.773 0.875 0.774 0.753 0.880

Oracle 0.869 0.838 0.965 0.847 0.846 0.928 0.857 0.840 0.944

Table 5: Average F1 score of PGM-SM with respect to differ-
ent training size

Datasets 25% of dataset 50% of dataset

dsedm 0.808 0.837

dscrm 0.823 0.848

Table 6: Average running time of PGM-SM on two different
datasets.

Datasets Training time Testing time

dsedm 162.47s 9.54s

dscrm 315.74s 59.37s

Each semantic labeler has different performance and characteristic,

thus provides different levels of noise to our system. Of the three

methods, SemTyper has the lowest MRR score indicating that its

output includes many incorrect semantic types. While DSL has

higher MRR score, thus provides fewer incorrect semantic types.

However, the confidence score between predicted semantic types

is similar since DSL predicts semantic labels based on a similarity

notion. Serene has the best MRR performance, and the confidence

score between correct and incorrect semantic types is very differ-

ent. The Oracle semantic labeler is a labeler that always outputs

the correct semantic type, thus provides no noise to the semantic

modeling system. The performance of these semantic labelers is

reported in Table 3.

We compare our method with two state-of-the-art semantic

modeling systems: Taheriyan et al. [29] and Uña et al. [30] (Serene).

The experiment results are reported in Table 4. Generally, the F1
score increases with less noise for three systems. Among them,

our approach outperforms the two baseline methods with the aver-

age increase by 6.53% and 10.92% on dsedm and dscrm, respectively.
As both baseline methods predict semantic models by finding the

minimum-weighted tree, they would be affected if the weights of

edges are similar. Therefore, they are more sensitive to the noise

of DSL. Our approach, however, uses the collective signals and

achieves significant improvement, which indicates it is more robust

to noise.

Table 5 shows the average F1 score of PGM-SMwhen the number

of known semantic models is 25% and 50% of the datasets. As the

training size increases, the performance of PGM-SM increases. The

average percentage of performance gain is 2.7%, which suggests

that the model achieves reasonable performance even when the

training size is small (25%). Comparing to the two baseline methods

Taheriyan et al. [29] and Serene in the same scenario, PGM-SM

improves the F1 score on average 7.68% and 9.20%, respectively.

In addition, we measure the running time of our approach in

terms of training and testing time listed in Table 6. The training

time starts from generating training examples to finishing training

PGM-SM. The testing time is total time to predict semantic models

of the testing data sources. Since the size of semantic models in

dscrm are twice as big as the models in dsedm (Table 2), we can see

that the training time of dscrm is nearly double dsedm. The testing
time does not increase correspondingly because it depends not only

on the runtime of PGM but also the runtime of the search algorithm,

which increases linearly with the number of attributes in the data

sources.

4.3 Feature analysis
To understand the impact of each feature on the result, we perform

ablation analysis by removing the factors described in Section 3.2.

As the results in Table 7 have shown, dropping some factors some-

times slightly increases the F1 score. In particular, STRUCT-SIM

and ERROR-PROP are important in dataset dscrm, while they are

not in dataset dsedm. The reason of this phenomenon is that the

semantic models in dscrm are very complex and structural while

semantic models in dsedm are not. For example, in dsedm, a creation
date of an artwork is modeled as a literal date time value. While in

dscrm, the date is represented as a class E52_Time-Span to capture

the fact that it could take an artist many years to create an artwork.

As those factors have little effect in dsedm, dropping them actually

makes the CRF model to learn better parameters of the remaining

factors. On the other hand, CO-OCCUR and GROUPING factors
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Table 7: Ablation analysis of the factors in PGM-SM. Each cell value is a difference in F1 score upon dropping one factor.

Factor Factor name

dsedm dscrm

SemTyper DSL Serene Oracle SemTyper DSL Serene Oracle

Structural Similarity STRUCT-SIM -0.009 0.004 0.020 0.008 -0.006 -0.013 -0.001 -0.015

Error Propagation ERROR-PROP 0.005 0.005 0.004 0.000 -0.006 -0.016 -0.001 0.003

Co-occurrence CO-OCCUR -0.006 -0.014 -0.008 -0.005 0.024 -0.008 0.010 0.004

Grouping properties GROUPING 0.008 -0.011 -0.003 0.008 -0.007 -0.012 0.004 0.003

Duplicated properties DUP-PROP -0.003 -0.009 -0.005 0.000 -0.007 -0.008 -0.003 -0.007

Cardinality relationships CARDINALITY -0.006 -0.020 -0.013 -0.023 -0.014 -0.049 -0.022 -0.032

show the opposite trend. DUP-PROP and CARDINALITY have pos-

itive impact on the F1 score for all datasets and CARDINALTIY is

the most important feature in our CRF model.

5 RELATEDWORK
There are many studies to automatically integrate data from multi-

ple sources. Although their goals are similar, they are different in

terms of inputs and assumptions and can be clustered into three

groups.

The first group focuses on problems of schema matching and

mapping [3]. Schemamatching generates correspondences between

elements of two schemas [4, 6, 19]. For instance, Madhavan et

al. [15] combine information from schema constraints (data types,

foreign keys), structure and values in data sources to find one to

one correspondence between elements in source schema and tar-

get schema. Schema mapping generates mapping formulas from

schema matches to transform data from source schema to target

schema [1, 2, 8, 9, 16, 23]. In some recent studies, Kimmig et al. [10]

use probabilistic soft logic to explore information from both data

examples and schema constraints to generate the mappings. The

semantic modeling problem, however, is different from schema

matching and mapping [29]. First, in addition to finding mappings

from attributes in a data source to ontology classes and properties,

we also generate relationships between the attributes. Moreover, as

data sources on the Web are often lack of schema constraints and

have different conventions, semantic modeling provides a straight-

forward approach to represent and publish the data to knowledge

graph.

The second group focuses on describing semantics of web tables.

Limaye et al. [14] use a probabilistic graphical model and an ex-

ternal knowledge base YAGO to annotate tables with entities for

cells, semantic types for columns and binary relationships between

columns. Mulwad et al. [17] share similar ideas with Limaye et al.,

in which they leverage Linked Open Data (LOD) such as DBpedia,

YAGO and Wikitology to link table cells with LOD entities. After

generating initial lists of candidates for cell values, they perform

inference to compute the assigned types of column, cell linkage and

relations between columns. Instead of using available knowledge

graphs, Venetis et al. [31] build two databases of class of entities

and relationships between the entities from text documents avail-

able on the Web. The column labels are assigned to maximize the

probability of column values given class labels of entities. All of

these approaches rely on external knowledge bases which provide

possible links between cell values and known entities. Hence, per-

formance of these approaches highly depends on the quality of the

linkages. Furthermore, as not all data attributes have correspond-

ing entities in knowledge base, e.g: birth date, phone, age; these

approaches may not be applicable to a broad range of data sources

and be restricted to domains where online data is widely available.

Our problem is in the final group, in which semantic models are

used to precisely describe meanings of data sources and publish

data to knowledge graph. The semantic models can represent a wide

range of data sources and in various formats such as CSV, XML,

JSON, etc. To address the semantic modeling problem, Taheriyan

et al. [28, 29] build an integration graph that represents space of

plausible semantic models for a new data source. Each link in the

integration graph is associated with a weight representing the fre-

quency of use of the link in previous models. First, attributes of a

new data source are associated with data nodes in the integration

graph. Then, the semantic model is built by finding the Steiner Tree

that connects the data nodes. Uña et al. [30] also predict seman-

tic models by finding Steiner Tree. However, to solve the Steiner

Tree problem, instead of using an approximation algorithm as in

Taheriyan et al. [29], they use constraint programming, an exact al-

gorithm, which allows it to incorporate more features as additional

constraints. Instead of solving the Steiner Tree problem, our ap-

proach uses a PGM to exploit collective signals from a data source.

The PGM allows us to express complex dependencies between the

features of good and bad semantic models. Therefore, we are able

to obtain better performance than the previous state-of-the-art

methods.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel approach for semantic modeling

that uses a probabilistic graphical model to exploit relationship

within data sources and semantic models. From a set of data sources

and their semanticmodels, we train a conditional randomfield (CRF)

to distinguish between good and bad semantic models. Then, we use

the CRF to efficiently search over the combinatorial space of possible

semantic models to identify the most probable model for a data

source. The evaluation shows that by exploring the relationships

within data, our approach generates better semantic models and is

more robust to noise than previous approaches.
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Because labeled data is costly to obtain, a future direction of our

work is to exploit transfer learning to leverage a vast amount of

available linked datasets in the Linked Open Data. For example, we

can train a CRF on linked datasets, which are represented using the

same domain ontologies, and reuse them as a pre-trained model.

We can also enrich our training set by applying ontology matching

techniques to align linked data from different ontologies to our

ontologies.

Another direction for future work is to integrate semantic mod-

eling with web data extraction. Unsupervised web data extraction

methods such as Trinity [24] can extract structural data from a set

of web pages. However, the output of these methods often includes

many redundant data attributes. By leveraging more information

from the extraction step such as the position of extracted attributes

in the web pages and collective information between data attributes,

we can potentially improve performance of systems that automati-

cally extract and semantically annotate web data.
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