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Abstract. Understanding the semantic structure of tabular data is es-
sential for data integration and discovery. Specifically, the goal is to an-
notate columns in a tabular source with types and relationships between
them using classes and predicates of a target ontology. Previous work
that exploits the matches between entities in a knowledge graph and
the table data does not perform well for tables with noisy or ambiguous
data. A key reason for this poor performance is the limited amount of
labeled data to train these methods. To address this problem, we propose
a novel distant supervision approach that leverages existing Wikipedia
tables and hyperlinks to automatically label tables with their semantic
descriptions. Then, we use the labeled dataset to train neural network
models to predict the semantic description of a new table. Our empirical
evaluation shows that using the automatically labeled dataset provides
approximately 5% improvement in column type prediction and 4.5% im-
provement in column relationship prediction in F1 scores over the state-
of-the-art on a large set of real-world tables.

Keywords: Semantic Models · Semantic Descriptions · Data Integration
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1 Introduction

The task of building a semantic description of a table, or semantic modeling, is
to annotate the types and relationships of columns using classes and predicates
of an ontology. The resulting annotation, called a semantic description, can be
used both for data discovery and for publishing data to a knowledge graph (KG).

Since creating semantic descriptions requires significant effort and expertise,
there is much research on automating this problem. In general, they can be
classified into two groups. The first group is supervised methods trained on a
set of known semantic descriptions with given domain ontologies [35, 36, 13].
Because the manually labeled dataset is expensive to obtain, these methods
do not work well for new or large ontologies. The second group exploits the
background knowledge in KGs to predict the semantic description [25, 28, 25,
28, 32, 39, 29, 20, 24]. First, they link table cells to entities in KGs. Then, they
match the entities’ property values with other table cells to find the semantic
description. These approaches work for large ontologies and generally do not



2 Binh Vu et al.

need to be retrained when the ontology is updated. They also tend to have only
a few parameters to learn; hence, they typically need little to no training data.

However, approaches in the second group tend to perform poorly on tables
with lots of ambiguity such as having similar candidate entities or few matches.
Due to the limited amount of training data, it is challenging for these methods to
learn the optimal parameters to combine the entity linking and data matching
results to resolve the ambiguity. Meanwhile, Wikipedia has millions of tables
containing hyperlinks that can be automatically converted to entities in a KG
such as Wikidata. This poses an opportunity to leverage this data to learn the
semantics of tables.

In this paper, we present a novel approach that exploits distant supervision
for semantic modeling. Specifically, we generate labeled datasets from Wikipedia
tables to train two neural networks (NN) to predict the likelihood of candidate
entities and column relationships. Then, similar to methods in the second group,
we perform entity linking and predict column types and relationships using the
two NNs. In our empirical evaluation, training the NN models with distant su-
pervision provides approximately 5% improvement in column type prediction
and 4.5% improvement in column relationship prediction in F1 scores over the
state-of-the-art.

The contribution of this paper is a novel method of using distant supervision
for the semantic modeling problem. Our solution provides an algorithm to create
the semantic description of a given table that is more robust to noise and ambi-
guity in the table data than the previous state-of-the-art. We also demonstrate
that the automatically labeled dataset, although it may be noisy, can be useful
to help train machine learning models to understand the semantics of tables.

2 Motivating Example

In this section, we provide an example to explain the problem of inferring a
semantic description of a table using the background knowledge found in a KG,
such as Wikidata. We want to map a table of players of national rugby teams to
Wikidata’s ontology. In Wikidata, each item (class/property) is uniquely iden-
tified by a letter followed with a number (e.g., Q5 or P54). To make it easier to
read, we occasionally add the item label after the identifier such as Q5 human.

Figure 1 shows an excerpt of the table with its semantic description on top.
The semantic description is expressed as a graph because there can be n-ary re-
lations between columns in a table. Each node in the graph represents a column,
an ontology class, or a literal (e.g., number, text, or date). Each edge presents an
ontology predicate encoding relationships between the two nodes. For example,
the edge Q5 human rdfs:label−−−−−−−→ Player specifies that the Player column contains
people’s names. The edge (Q5 human

P54 members of sports teams−−−−−−−−−−−−−−−−−−→) shows that they
are members of some sports teams. Note that the table also has the number
of points that players scored for their teams. This is a ternary relationship and
is expressed using an intermediate node wb:Statement called statement node.
To indicate what the statement is mainly about, we use an outgoing edge (e.g.,
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Fig. 1. Excerpt of a table of players of national rugby teams with its semantic de-
scription on top. Green circle nodes are ontology classes; blue cells on the first table
row represent columns. The node wb:Statement, named statement node, is used to
represent a ternary relationship between the players, their teams, and the number of
points scored for the teams.

P54) that has the same label as the statement’s incoming edge. For instance, Q5
human P54−−→ wb:Statement P54−−→ Team reveals that the players’ teams can be found
in the Team column. We refer to the edge P54 as the statement property. The
other outgoing edges are statement qualifiers providing additional information
to the statement (e.g., wb:Statement

P1351 number of points−−−−−−−−−−−−−−−→ Points).
The first step in methods that exploit a KG as background knowledge is

to detect linkable cells and then retrieve candidate entities associated with
the cells. For example, Dan Carter can link to Dan Carter (politician) or
Dan Carter (rugby player). Similarly, New Zealand can link to New Zealand
(country), New Zealand national football team, or New Zealand national
rugby team. Then, each property’s value of the candidate entities of a cell is
matched with other cells in the table to identify potential relationships be-
tween the two cells. For example, the value of the property P27 country of
citizenship of Dan Carter (rugby player) is New Zealand (country) sug-
gesting that P27 can be the relationship between the columns Player and Team.

The ambiguity arises as the correct entity of the cell New Zealand is the
rugby team, but the candidate entity New Zealand (country) has a label that
matches exactly with the cell’s value. In addition, property P27 country of
citizenship is found in more rows than the correct property P54 making it
even more uncertain. Fortunately, the surrounding context such as the column
header Team tells us that entities in this column should not be countries. Also,
we find more members of rugby teams in the table than members of football
teams. Thus, rugby teams should have higher likelihood, which are the correct
entities. Without a large training dataset, learning to combine all of these signals
can be challenging with large ontologies and noisy tables. Therefore, we turn our
attention to using the hundreds of thousands of Wikipedia tables with hyperlinks
to other articles. These links enable us to infer the ground-truth entities and parts
of the semantic descriptions with decent accuracy. Then, we use the inferred
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labeled data to train a context-aware table entity linking method, and a neural
network model to predict the semantic descriptions.

3 Learning the Semantics of Tables

Problem Definition: In this paper, we focus on the problem of finding columns’
types and their (n-ary) relationships. Given a plain1 relational table s and target
ontology O of a knowledge graph, we want to find the semantic description sm(s)
of table s using classes and predicates in O.

Fig. 2. Overall approach

Overall Approach: Figure 2 shows the overall approach. It starts by finding
KG entities that are mentioned in a table (entity linking). Then, we use a neural
network (NN) to compute the scores of candidate entities of each table cell. The
NN model is trained with distant supervision. Using the discovered candidates
and their scores, we perform two tasks: predict column types (CTA) and column
relationships (CPA). The results of CTA and CPA are combined to get the final
semantic description. In our experiment, finding column relationships is much
more difficult than finding the column types. To combine all potential signals for
the CPA task, we use another NN model to estimate the likelihood of possible
relationships. This model is also trained using distant supervision.

3.1 Creating Labeled Dataset from Wikipedia Tables

To automatically annotate Wikipedia tables, we leverage the hyperlinks inside
the tables to find corresponding Wikidata entities and predict columns’ relation-
ships based on the linked entities. However, it’s a non-trivial task to label all
Wikipedia tables with high accuracy. There are several challenges such as detect-
ing table layout and orientation, identifying location of headers and content, or
context-inconsistent hyperlinks. An example of context-inconsistent hyperlinks
is a column named city, but the links in the column are to airport.

For simplicity, we focus on relational tables for which it is relatively easy
to automatically generate labeled data. We define the following conditions to
identify an easy-to-label table: (1) has a minimum of 10 rows, (2) has a maxi-
mum of one hyperlink per cell, (3) has a column with at least 70% of its cells
containing hyperlinks, and (4) more than 80% of the links have corresponding

1 A plain table does not contain any markup such as hyperlinks
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entities in the KG. The conditions are derived heuristically based on the quality
of the generated labels of a small set of randomly selected Wikipedia tables used
for development purposes. To remove context-inconsistent hyperlinks, we first
automatically assign a type to each column based on the most common type
of its entities. Then, we employ a blocklist to remove all links in a column if
the column header is incompatible with the predicted column types. We create
the blocklist by manually reviewing normalized column headers2 that appear in
multiple predicted types and labeling the incompatible types. The number of
headers to review is approximately 230 headers.

To generate labeled data for entity linking, we use the existing hyperlinks as
positive examples. The negative examples are other candidate entities retrieved
using the method described in Section 3.2. To generate labeled data for column
relationship prediction, we first apply our method described in Section 3.4 to
create a graph containing candidate relationships, then remove the relationships
that occur in less than 50% of the rows or have more than 10% of the rows with
different data than in KGs. After that, the remaining relationships are grouped
by the source and target columns or literal values; only the relationships with
the highest matching frequencies are used as the ground truth for the column
relationship prediction. The generated candidate relationships that are not in
the ground truth are considered as negative examples. The numbers used in
the aforementioned steps are also chosen heuristically based on the small set of
Wikipedia tables.

3.2 Entity Linking in Tables

The first step in our method is to link table cells to entities in the KG. Following
typical entity linking (EL) systems, our EL approach consists of three main steps:
(1) detect the entity columns, which are the cells that will be linked; (2) retrieve
candidate entities for each cell; and (3) compute the candidates’ likelihood.

To detect entity columns, we use the same heuristic as in [29]. Specifically,
if the majority of the cells of a column are classified as text (e.g., using Spacy
and regex), the column will be linked. This heuristic yields a high recall but
low precision (about 0.75 to 0.8 on the evaluation datasets). Next, we generate
candidate entities for each cell in the entity columns by combining search results
of several approaches: public search API (e.g., Wikidata API), keyword search
using ElasticSearch, and fuzzy matching of entity names [14]. Finally, we use a
neural network that takes a cell, the surrounding context (e.g., column header),
and a candidate entity, then predicts the likelihood of the candidate entity.

Our candidate entity scoring model is a two-hidden-layer perceptron with
RELU activations. It is trained using the auto-label dataset described in Sec-
tion 3.1 with the following groups of features.

Surface Features consist of four different metrics to measure the similarities
between a mention and candidate names: Levenshtein, Jaro-Winkler, Monge
Elkan, and Generic Jaccard.
2 We normalize a header by masking numbers, removing special characters, etc.

https://spacy.io/
https://www.wikidata.org/w/api.php
https://www.elastic.co/
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Entity-context Similarity Features capture the coherence between a can-
didate and the surrounding context of a mention. We have two context similarity
features: the weighted dot product of the embeddings of the column header and
the candidate’s description, and the number of cells matched with the candi-
date’s property divided by a large constant representing the maximum number
of columns in a table (e.g., 20) for rescaling. The embeddings are computed from
a Sentence Transformer model [31]3, and the weights of embedding dimensions
are learnable parameters.

Entity Prior Features bias the predictions toward popular entities. Cur-
rently, we use the normalized log page rank of a candidate as the prior feature.
The normalized log page rank of an entity e is calculated as follows:

log(pagerank(e))−mine′∈E log(pagerank(e′))
maxe′∈E log(pagerank(e′))−mine′∈E log(pagerank(e′))

where E is the set of entities in KG, pagerank(e) is the pagerank of an entity e.
As real-world tables sometimes do not have headers, we train another version

of our entity linking model on the same auto-label dataset in which the headers
have been removed. At the testing time, if a column header is empty, we use
the model trained without headers. Otherwise, we use the model trained with
headers. We find that this strategy works better than training a single model on
the combined datasets.

3.3 Column Type Prediction

Algorithm 1 describes our column type prediction method. This greedy algo-
rithm first selects the type with the highest score from the set of types directly
found in the candidate entities (lines 1 - 3) of a column. The score of a type is
computed by summing the maximum likelihood of the candidate entities of the
type for each cell (line 2) and divided by the number of rows (line 3). Next, the
algorithm iteratively refines the prediction by replacing it with an ancestor type
within d distance of the directed types if the score difference is larger than a
specific threshold δ (lines 4 - 10). d is increased by one after each iteration up to
max_distance, which is a parameter of the algorithm. The threshold (δ = 0.1)
and maximum distance (max_distance = 2) are chosen empirically.

To illustrate the algorithm, we use an example of a column named university
containing ten cells. The annotated type of the column is Q3918 university.
We have eight cells linked to public universities and two cells linked to pri-
vate universities. First, the algorithm finds two candidate types Q875538 public
university and Q902104 private university from the entities in the column
(line 1), which the likelihoods are 0.8 and 0.2, respectively (line 2 - 3). Thus, it
assigns the best type to be Q875538 (line 3). Then, it considers ancestors of the
discovered types within 1-hop and discovers Q3918 university (line 5). The
likelihood of the new type is 1.0 (line 6 - 7). Since it is greater than 0.8 + δ,

3 We use the pretrained all-mpnet-base-v2 model.
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Algorithm 1: Column Type Prediction
Input: A target column C, candidate entities of each cell in C, a threshold δ,

and a maximum searching distance max_distance
Output: predicted column type and its score

1 di_types ← direct types of candidate entities in C
2 type2cells ← mapping from a type in di_types to the maximum likelihood of

candidate entities of the type (no inheritance) for each cell in C
3 best_type, best_avg_likelihood ← the type with the highest average likelihood

from type2cells
4 for d ← 1..max_distance do
5 extend_types ← di_types and ancestors of di_types within d-hop
6 extend_type2cells ← mapping from a type in extend_types to the

maximum likelihood of candidate entities of the type (with inheritance)
for each cell in C

7 new_type, new_avg_likelihood ← the type with the highest average
likelihood from extend_type2cells

8 if new_avg_likelihood ≥ best_avg_likelihood + δ then
9 best_type ← new_type

10 best_avg_likelihood ← new_avg_likelihood

11 return best_type, best_avg_likelihood

the best type is reassigned to Q3918. In the second iteration, it searches ances-
tors within 2-hop distance, and finds Q2385804 educational institution, of
which likelihood is also 1.0. However, the algorithm will not reassign the best
type as the score difference is now less than δ. The iteration ends and the algo-
rithm returns Q3918, which is the correct type.

3.4 Column Relationship Prediction

Our column relationship prediction consists of three steps. First, we generate a
candidate graph containing potential relationships between columns. Then, we
use a classifier to predict the likelihood of each link in the graph. Lastly, we
employ the Steiner Tree algorithm [35] to select the links that maximize the
average likelihood as our final prediction.

The candidate graph is created using a modified version of the algorithm
in [37]. The general idea of the algorithm is to build a data graph, containing
relationships between cells in a table. Then, we group the relationships between
the cells from the same pairs of columns to obtain the relationships at the column
level. Different from the original version, our modified algorithm treats each row
of the table independently. Therefore, when building the data graph, we can
process the table in parallel while not having hubs with many connected edges.

To discover the relationships between cells, for each row, we iterate through
each candidate entity of a cell and match the property value of the candidate with
other cells in the same row. When we find a match, we add a statement node and
link from the cell to the matched cell through the statement node. The statement
node is uniquely identified by the row number as well as the original statement
id in Wikidata. This enables n-ary relationships to be constructed automatically
during the matching process. For example, in the first row of the table in Figure 1,
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(a) The data graph after processing the
first row of the table

(b) Excerpt of the candidate graph built
from the data graph

Fig. 3. Excerpt of a data graph and a candidate graph containing relationships discov-
ered in the table in Figure 1

assuming that we have the following candidate entity Q726199 for Dan Carter,
and ⟨Q664, Q55801⟩ for New Zealand. We discover the following relationships:
(Q726199

P54 members of sports teams−−−−−−−−−−−−−−−−−−→ statement:0:Q726199:P54:1 P54−−→ Q55801),
(Q726199 P54−−→ statement:0:Q726199:P54:1 P1351−−−→ 1598) , and (Q726199 P27−−→
statement:0:Q726199:P27:1

P27 country of citizenship−−−−−−−−−−−−−−−−−→ Q664). The data graph
after processing the first row is shown in Figure 3a.

From the data graph, the candidate graph is created by grouping links of
nodes between the same pair of columns. The grouping is performed in two
phases: links representing statement properties are grouped before links rep-
resenting statement qualifiers. For example, in Figure 3a, we will first group
links ( P54−−→ statement:*:*:P54 P54−−→) between cells of columns Player and Team.
Then, we add the qualifiers (statement:*:*:P54 P1351−−−→) to the grouped state-
ment node. An excerpt of the candidate graph is shown in Figure 3b.

The classifier employed to predict the likelihood of links is also a two-hidden-
layer perceptron with RELU activations. It is trained on the auto-label dataset
(Section 3.1) to take features extracted from a single link and classify whether
it is correct. The features include the relative frequency of discovering the link
from top K entities, the average link likelihood, the relative frequency of finding
contradicting information between the table data and KG data, and whether
there is a many-to-many relationship between the source and target of the link.

We use the trained classifier to predict the probability of outgoing links of
statement nodes in the candidate graph. The incoming link of a statement node
will have the same score as the outgoing link representing the statement property.
Finally, we use the Steiner Tree algorithm to select a subtree that maximizes
the average likelihood of the links as our column relationship prediction. For
example, assuming the scores of ⟨Player, Team, P27⟩, ⟨Player, Team, P54⟩, and
⟨Player, Point, P1351⟩ are 0.7, 0.85, and 0.6, respectively. Our Steiner Tree
will select a subtree containing the last two links (P54 and P1351) as it has the
highest average likelihood.
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4 Evaluation

4.1 Experiment Setup

Data: We evaluate our approach on three datasets for mapping tables to Wiki-
data: 250WT [37], HardTables (2022 SemTab challenge, round 1) [16], and Wiki-
dataTables (2023 SemTab challenge, round 1) [17]. The 250WT dataset contains
250 tables sampled from Wikipedia and is manually annotated. We update this
dataset to remove all HTML markup (e.g., remove hyperlinks to the correct enti-
ties in Wikidata) because this information is generally not available for real-world
tables. The HardTables and WikidataTables datasets are synthetic datasets con-
taining 3650 and 9920 tables, respectively. We choose the datasets mapped to
Wikidata ontology instead of datasets mapped to other knowledge graphs be-
cause Wikidata has a huge ontology with millions of classes and thousands of
properties. Compared to other ontologies, the Wikidata ontology is designed
to represent n-ary relationships (using statements and qualifiers), which can be
found in real-world tables. Together, this captures the challenges and complexi-
ties of the semantic modeling task in the wild.

The most recent SemTab challenge (2023) introduces tFood, a new synthetic
dataset generated from Wikidata’s entities. However, we cannot use it because
the columns’ values containing entity names are anonymized using random char-
acters. Since the names are replaced, this dataset focuses on a different aspect
of the problem, which is finding the anonymous entities. This is not the focus
of this paper and we leave it for future work. We also cannot use other datasets
such as ToughTables [8] and WikiGS [12] (updated by [5]) because they do not
have ground truth for column relationship annotation.

Our training dataset is created by randomly sampling five thousand automat-
ically labeled tables from Section 3.1. We exclude any Wikipedia articles con-
taining tables from the 250WT dataset from the training set to avoid data con-
tamination. Also, we use Wikidata dumps on 2023-06-19 and Wikipedia dumps
on 2023-06-20.

Evaluation Metrics: We assess the quality of the predictions in two differ-
ent tasks: column type annotation (CTA) and column relationship annotation
(CPA). The two tasks are evaluated using the approximate precision, recall, and
F1 scores defined by the SemTab challenge [1]. The difference between the ap-
proximate metrics and their exact version is the partial credits they give when
a system predicts a sub/parent class/property of the correct one. In particular,
let d(x) be the shortest distance of the predicted item (class or property) to the
ground truth (GT) item. d(x) is 0, 1 if the predicted item is equal to GT, or
parent or child of GT, respectively. score(x) = 0.8d(x) if d(x) ≤ 5 and x is a
correct annotation or an ancestor of GT; score(x) = 0.7d(x) if d(x) ≤ 3 and x is
a descendent of GT; otherwise, score(x) = 0. For readability, we sometimes refer
to the approximate scores by just precision, recall, or F1 score.

Baselines: We compare our approach, named GRAMS+, with winners of the
SemTab challenges: MTab [29], KGCODE-TAB [24] and DAGOBAH [20], which
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are the current state-of-the-art (SOTA) systems on this task. We create another
baseline from GRAMS [37], the system that has the SOTA result on the 250WT
dataset. Because GRAMS assumes that it is given the correct entities, we run
GRAMS with the top 1 candidate entities. We cannot evaluate the best sys-
tems of the 2023 SemTab Challenge (TorchicTab [9] and SemTex [18]) as their
source code is not available. However, SemTex reports its performance on the
HardTables dataset, and we directly use the reported numbers for comparison.

To ensure a fair comparison, the baselines are modified to receive the same
candidate entities as our method (100 candidate entities per cell). We cannot
modify DAGOBAH because it is only available as an API at the time of submis-
sion. However, for DAGOBAH’s CTA output, we notice that instead of predict-
ing if a column contains people, they attempt to predict the occupation as the
column type (e.g., politicians instead of humans). To give DAGOBAH credit for
their prediction, if the column type in the ground truth is Q5 human, we will map
the predicted occupation (subclass of Q215627 person) to the correct class.

Modeling Training: Our neural network models for entity linking and column
relationship prediction are trained using Adam [22] with a learning rate of 1e−4
for 50 epochs.

4.2 Overall Performance

Table 1 shows the performance of our method, GRAMS+, versus the baselines
on the three datasets: 250WT, HardTables, and WikidataTables. On the 250WT
dataset, GRAMS+ outperforms MTab by 12.32% and 11.78% and DAGOBAH
by 4.57% and 4.95% in macro-average approximate F1 scores in the CPA and
CTA tasks, respectively. Our method achieves considerably higher F1 scores than
GRAMS and KGCode-Tab in both tasks. In the CPA task, we generate candidate
relationships using the method in [37]. This method does not rely on detecting
subject columns of tables and can also detect n-ary relationships. Therefore, it
helps us achieve higher recall. In addition, we also have greater precision because
the neural network for scoring relationships is better at distinguishing incorrect
relationships, thanks to the distant supervised training. The improvement in the
CTA task is mainly due to better candidate entity scoring on ambiguous tables.
For example, for the column Team in the motivating example, our entity linking
model correctly ranks entities of national rugby teams among the top 2 (top 1
is national football teams). MTab, however, prefers entities of type country as it
does not use any signal from the surrounding context (e.g., header). DAGOBAH
also selects countries for this example.

On the HardTables and WikidataTables datasets (Table 1), most methods
achieve high performance. The reason is that these synthetic datasets are much
less noisy and less ambiguous than the 250WT dataset. The mentions and en-
tity labels are often identical or differ by one or two characters, whereas in
250WT, the differences can be more significant (e.g., Ireland versus Ireland
National Rugby Union Team or CB versus center back). DAGOBAH, however,
has a much lower CPA recall than the other methods as their API turns off the
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Table 1. Performance comparison between our method, GRAMS+, and the baselines
on CPA and CTA tasks. AP, AR, and AF1 are macro-average approximate precision,
recall, and F1 in percentage, respectively

Dataset Method CPA CTA

AP AR AF1 AP AR AF1

250WT

KGCode-Tab 28.25 70.01 36.52 42.28 58.03 47.82
GRAMS 75.86 42.27 44.71 66.33 77.38 70.45
MTab 73.28 50.72 54.09 64.61 71.9 67.16
DAGOBAH 76.42 60.92 61.84 71.47 78.95 73.99
GRAMS+ 82.79 62.06 66.41 80.54 78.26 78.94

Hard
Tables

DAGOBAH 99.2 36.40 37.10 92.9 90.0 90.1
KGCode-Tab 88.33 86.79 81.22 74.86 80.42 73.64
GRAMS 95.64 83.72 84.57 80.37 87.64 80.54
MTab 98.78 94.06 94.1 94.87 91.5 91.53
GRAMS+ 98.92 91.20 91.71 94.36 90.58 90.63

Wikidata
Tables

MTab 94.7 95.91 92.24 97.14 93.51 94.1
GRAMS+ 94.38 91.10 89.25 96.08 94.00 94.06

feature to predict relationships to numeric columns. Also, we cannot evaluate
DAGOBAH on the WikidataTables dataset as they discontinued their public
API. While our method’s results exceed DAGOBAH, they are lower than MTab
by 2.38% and 0.9% in F1 scores in CPA and CTA tasks on the HardTables
dataset and by 2.99% and 0.9% in F1 scores in CPA and CTA tasks on the
WikidataTables dataset, respectively.

Analyzing the results of our approach, we find that most errors in the CPA
task are due to predicting relationships of unannotated pairs of columns. For
example, we need to predict the relationship P361 part of between columns 0
and 1, but GRAMS+ predicts the inverse relationship P527 has part between
columns 1 and 0; hence, it does not get credit. To verify our finding, we ran
another experiment in which GRAMS+ and MTab were given the target columns
that the systems should predict. For example, an input table has three columns
but the systems are instructed to predict only relationships between columns 0
and 1. In this experiment, on the HardTables dataset, both methods’ new CPA
average macro F1 scores are 94.48%, and on the WikidataTables, our method
has a better CPA F1 score by 0.51%. Therefore, our neural network for ranking
relationships is not the main reason for the lower performance than the baseline
on this dataset.

For our CTA results, we see that many failed tables have only 3 or 4 rows.
Either the entities’ types in the rows are changed in our Wikidata snapshot (they
no longer belong to the target classes in the ground truth), or we incorrectly
rank some entities in the top 1. Thus, the score differences between the target
classes and incorrect classes are very similar. Because our CTA method only
relies on the candidate entity scores, it does not use our CPA task’s output to
help disambiguate them. This is a limitation of our CTA approach and we leave
this for future work. Note that this issue tends not to happen for bigger tables.
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Table 2. Performance comparison with the baselines when the target columns for
CPA and CTA are provided. m-AP, m-AR, and m-AF1 are micro-average approximate
precision, recall, and F1 in percentage, respectively

Dataset Method CPA CTA

m-P m-R m-F1 m-AP m-AR m-AF1

Hard
Tables

KGCode-Tab 98.19 86.85 92.17 86.73 81.40 83.98
KGCode-Tab [24] 94.4 94.0 94.2 91.8 89.43 90.6
SemTex [18] - - 97.05 - - 93.85
MTab 99.01 97.81 98.4 95.09 95.09 95.09
DAGOBAH [20] 99 97.8 98.4 97.5 97.5 97.5
GRAMS+ 98.18 97.93 98.06 94.02 93.98 94.00

Wikidata
Tables

SemTex [18] - - 96.4 - - 93.4
MTab 99.35 96.90 98.11 97.18 95.47 96.32
GRAMS+ 98.39 96.03 97.20 95.79 93.94 94.86

The reason is that our CTA method indirectly utilizes the collective signal from
other columns since our entity linking method prefers entities with overlapping
data with the table.

As we cannot obtain the source code of DAGOBAH and SemTex, we can-
not ensure the same experiment setup (e.g., having the same candidate entities).
Therefore, we evaluate our method and MTab in the same setting as the SemTab
challenge to compare with their results. Results of this experiment are reported
in Table 2. For DAGOBAH and SemTex, we directly use the numbers from their
papers. On the HardTables, DAGOBAH outperforms the other systems in the
CPA and CTA tasks by 2.52% and 3.6% (F1 scores), respectively. One possible
reason is the changes in the correct entities’ types and properties in our Wiki-
data snapshot, as discussed above. The difference between the CPA performance
of MTab and our method in this experiment is small and the difference is not
statistically clear4. On the WikidataTables, MTab’s performance surpasses all
systems by at least 0.91% and 1.46% (F1 scores) in CPA and CTA tasks, respec-
tively. However, our method also outperforms SemTex, the system that has the
highest performance among the SemTab2023 participants by 0.8% and 1.46%
(F1 scores) in CPA and CTA tasks, respectively.

4.3 Impact of Entity Linking on the Performance

To understand the impact of the entity linking step, we evaluate our method
on two different entity ranking methods: (1) using our entity linking likelihood
score and (2) using MTab’s candidate retrieval score. In addition, we experiment
with different numbers of candidate entities per cell.

Table 3 shows the performance of our system with the two aforementioned
ranking approaches. The CTA F1 score drops significantly by 6.72%, while the
CPA F1 score slightly decreases by 2%. The results indicate that the candidate

4 The p-value of the sign test [11, 38] on the accuracies of the two systems is 0.086
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Table 3. The performance of our method on the 250WT dataset with respect to two
different candidate ranking methods

Method CPA CTA

AP AR AF1 AP AR AF1

Our Entity Link
-ing Score 82.79 62.06 66.41 80.54 78.26 78.94

Retrieval Score 80.74 61.00 64.41 73.60 71.70 72.22

entity scores play a critical role in the CTA task. In the CPA task, our model can
leverage other collective signals in the table to make more accurate predictions
and, thus, is less dependent on the candidate scores.

Fig. 4. Performances of our system and MTab with different numbers of candidate
entities (x-axis) on the 250WT dataset. The CPA F1 scores are shown in the left figure
and the CTA F1 scores are shown in the right

Figure 4 shows GRAMS+’s and MTab’s performance with different numbers
of candidate entities (K) per cell. In general, our CPA F1 score increases as K
increases, while MTab’s CPA F1 score peaks at K = 3 (55.7%) and then gradually
declines. We also see a similar weaker trend in CTA scores. One of the reasons
is that the input noise increases as the number of candidate entities increases.
This demonstrates that our method is more robust to noise.

4.4 Impact of Table Metadata on the Performance

To understand how well our method can leverage the table metadata (column
headers) to overcome ambiguous examples, we perform an ablation study by re-
moving the table metadata from the entity-context similarity features described
in Section 3.2. Table 4 shows that our approach can utilize the table metadata
to overcome ambiguous cases; hence, our F1 scores increase by 2.66% and 2.05%
in CPA and CTA tasks, respectively. Without table metadata, our approach still
outperforms the baselines by at least 1.91% and 2.9% in F1 scores in CPA and
CTA tasks, respectively.

5 Related Work
Previous work on the semantic modeling task includes supervised [35, 36, 13]
approaches for custom domain ontologies and approaches that exploit KGs [25,
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Table 4. The performance of our method on the 250WT dataset with and without
table headers

Our Method CPA CTA

AP AR AF1 AP AR AF1

With metadata 82.79 62.06 66.41 80.54 78.26 78.94
Without metadata 77.64 61.29 63.75 77.67 77.18 76.89

28, 32, 39, 29, 20, 24, 9, 18]. The supervised approaches often take two inputs:
a target ontology and a set of known semantic descriptions as training data.
Taheriyan et al. [35] build a semantic description by finding a Steiner Tree that
connects the data source’s attributes, in which the Steiner Tree is a subgraph
of the graph created by integrating known semantic descriptions in the training
set. Building on this idea, Vu et al. [36] use a probabilistic graphical model
(PGM) to compute the likelihood of a semantic description. Then, they use the
PGM as a scoring function to search for the most probable semantic description.
Recent work by Feng et al. [13] attempts to improve the prediction of [35] via
post-processing using a domain KG. Despite being flexible in choosing a target
ontology, these approaches suffer from the cold start problem: users need to
label enough data sources before the systems can perform well. This issue is
more profound with a large ontology as they would need lots of training data.

The approaches exploiting existing knowledge in KG are typically unsuper-
vised. However, these approaches can also benefit from some labeled annotations
to fine-tune their parameters, which are typically few. The common methodology
of these approaches is to identify KG entities in a table (Entity Linking - EL)
and match the properties of entities with values in the table to find column types
(CTA) and relationships between columns (CPA). Limaye et al. [25] and Mul-
wad et al. [28] are among the first works to solve the three tasks (EL, CTA, and
CPA) jointly using probabilistic graphical models. However, they do not handle
non-entity columns in the tables. Later work shifts to the iterative paradigm
and expands the problem setting to include literal columns. Ritze et al. [32] first
identify a table’s subject (entity) column, then find the candidate relationships
between the subject column and other columns in the table. Ritze et al. itera-
tively update the candidate entities and candidate relationships until stability is
achieved. Zhang et al. [39] refine entity linking results to be consistent with the
annotated column types and the table’s domain, estimated using a bag-of-words
method, and then predict column relationships. The best performance systems
of the SemTab challenges [21, 7, 1, 15], such as MTab [29], DAGOBAH [20], and
others KGCode-Tab [24], LinkingPark [6], BBW [33], TorchicTab-Heuristic [9],
and SemTex [18] also follow the iterative paradigm. Their systems improve var-
ious aspects of the pipeline, such as candidate entity retrieval and scoring func-
tions to rank the matched results. GRAMS [37] extends to the full setting to
predicting n-ary relationships and missing context values for Wikipedia tables.
In particular, they build a candidate graph of potential relationships and use a
Probabilistic Soft Logic [2] to rank the graph edges and select the most proba-
ble subgraph containing relationships in the input table. Our work tackles the



Exploiting Distant Supervision for Semantic Modeling 15

complete setting of the semantic modeling task and differs from previous work
in using distant supervision to automatically generate labeled data to train ma-
chine learning models instead of relying on hand-crafted scoring functions. It is
the first approach to use distant supervision for CPA.

As entity linking plays a vital role in many semantic modeling approaches,
it is worth mentioning that using distant supervision for table entity linking
has been explored in previous work. Bhagavatula et al. [3] use hyperlinks in
Wikipedia tables as the ground truth to train a logistic regression model for col-
lectively disambiguating candidate entities. DAGOBAH [20] also use the dataset
from [3] to learn a relevance score between entity descriptions and column head-
ers using a transformer model. Compared to the previous methods, our approach
excludes hyperlinks inconsistent with the context instead of using all of them.
This helps reduce noise and makes learning easier. Using a transformer model
to learn a relevance score with the headers in DAGOBAH is similar to the con-
text feature in our entity linking model. However, we directly train the model to
disambiguate the candidate entities rather than just learning a relevance score.

Finally, there is some previous work on table understanding that has different
or restricted settings compared to the semantic modeling task in this paper [26].
For example, DSL [30], ColNet [4], Sherlock [19] focus on only annotating the
column types in the tables. Luzuriaga et al. [27] focus on generating triples of
relationships between columns for Wikipedia tables. TURL [10], DODUO [34],
and TorchicTab-Classification [9] predict both column types and column rela-
tionships. However, the three approaches (TURL, DODUO, and TorchicTab-
Classification) need to be provided with the target columns to predict, while
in our setting this information is not given and the method figures it out. They
treat this problem as a supervised classification problem, and all use transformer-
based models. TorchicTab-Classification extends DODUO with a sub-table sam-
pling strategy to work for large tables and is trained on SOTAB [23], a dataset
constructed automatically from microdata in websites. TURL and DODUO are
trained on a modified version of WikiGS [12], in which Wikipedia tables are
labeled automatically with Freebase ontology. The labels for WikiGS are gen-
erated based on the common types and relationships of entities found in the
tables. While the updated WikiGS can be used to train our methods, we devel-
oped a new automatically labeled dataset from Wikipedia to help teach models
to handle challenges in the real world, such as n-ary relationships (e.g., number
of goals a player scored for different sports teams) or ambiguous tables (e.g., cells
should be linked to national sports teams but are incorrectly linked to countries
in Wikipedia). Our primary contribution is not the auto-labeled dataset, but
rather it is a novel semantic modeling method that can map tables to a target
knowledge graph. Although TURL and DODUO are trained on an auto-labeled
dataset similar to ours, their approaches require the same sets of predefined tar-
get classes and properties as target labels for both training and testing datasets.
Our approach does not require testing datasets to have the same target labels.
For instance, approximately 59% (89/150) and 26% (31/119) of the classes and
properties, respectively, in the 250WT dataset do not appear in our training set.
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6 Conclusion and Future Work
This paper presents a novel distant supervision approach for learning semantic
descriptions of tables. Using the hyperlinks in Wikipedia tables, we generate
labeled examples to train two neural networks to predict the likelihood of candi-
date entities and column relationships. Then, we use the two models to predict
column types and relationships to obtain the semantic descriptions of tables.
The empirical evaluation shows that our approach outperforms state-of-the-art
methods on a large set of real-world tables. Moreover, it is more robust to noise
from the entity linking step and can leverage the table metadata to overcome
ambiguous examples.

We demonstrate that we can use automatically labeled tables to train a se-
mantic modeling method to achieve good results without hand-crafted scoring
functions. To achieve these results, or method does make some assumptions.
First, our method assumes that some of the entities in a table also appear in
a target KG (data overlapping assumption). Thus, our method cannot be used
to map tables to a domain ontology (e.g., CIDOC-CRM5) that does not have
a corresponding knowledge graph with overlapping data. Second, we assume we
can find relevant contextual information in order to map the data in a table to
the correct ontology class. Although our method has incorporated table meta-
data (column headers) to our predictions, information from column headers may
not be distinct enough in some cases (e.g., the header team can mean both na-
tional soccer teams or national rugby teams). A more sophisticated approach,
such as one using large language models, can be used to better understand the
surrounding context. We leave this for future work.

In future work, we plan to increase the number of labeled tables by relaxing
filtering conditions described in Section 3.1 and creating new tables by adding or
removing rows in the labeled Wikipedia tables. Additionally, learning to jointly
predict column relationships and types can potentially improve the performance
of the whole task. Another exciting direction using the auto-labeled dataset is
to explore methods that can leverage the table context and metadata to model
the tables that have little or no overlap with a KG.

Supplemental Material Statement: The experiment results, code, and models are
available at https://purl.org/gramsplus.
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