
A Graph-based Approach for Inferring Semantic
Descriptions of Wikipedia Tables

Binh Vu1, Craig A. Knoblock1, Pedro Szekely1, Minh Pham1, and Jay Pujara1

USC Information Sciences Institute, Marina del Rey CA 90292, USA
binhvu,knoblock,pszekely,minhpham,jpujara@isi.edu

Abstract. There are millions of high-quality tables available in Wiki-
pedia. These tables cover many domains and contain useful information.
To make use of these tables for data discovery or data integration, we
need precise descriptions of the concepts and relationships in the data,
known as semantic descriptions. However, creating semantic descriptions
is a complex process requiring considerable manual effort and can be er-
ror prone. In this paper, we present a novel probabilistic approach for
automatically building semantic descriptions of Wikipedia tables. Our
approach leverages hyperlinks in a Wikipedia table and existing knowl-
edge in Wikidata to construct a graph of possible relationships in the
table and its context, and then it uses collective inference to distinguish
genuine and spurious relationships to form the final semantic descrip-
tion. In contrast to existing methods, our solution can handle tables that
require complex semantic descriptions of n-ary relations (e.g., the popu-
lation of a country in a particular year) or implicit contextual values to
describe the data accurately. In our empirical evaluation, our approach
outperforms state-of-the-art systems on the SemTab2020 dataset and
outperforms those systems by as much as 28% in F1 score on a large set
of Wikipedia tables.

Keywords: Semantic Models, Semantic Descriptions, Knowledge Graphs,
Probabilistic Soft Logic, Semantic Web, Linked Data, Ontology

1 Introduction

Wikipedia is one of the largest encyclopedias in the world. Extracting and in-
tegrating the structured data from Wikipedia to knowledge graphs (KGs) can
bring great benefits to many applications. DBpedia, a popular KG, has shown
the success and impact of such a strategy, but only uses infoboxes. Besides these
infoboxes, Wikipedia also has millions of high-quality tables covering a wide
range of domains. Leveraging these tables can potentially help to add or keep
the knowledge in KGs up-to-date. For example, in an evaluation dataset col-
lected from Wikipedia (Section 4.1), we found that approximately 64% of the
relationships in the data in these tables are not present in Wikidata. However,
it is challenging to make use of these tables on a large scale as they are stored
in different schemas. The task of building semantic descriptions of tables (also



2 Binh Vu et al.

called semantic modeling [19,20]) addresses this challenge by precisely describing
concepts and relationships contained in the data in a machine-readable form. A
semantic description of a table is a graph where each node represents either an
ontology class, a column, an entity, or a literal (e.g., number, text, or date),
and each edge represents an ontology property encoding a relationship between
the two nodes (Figure 1). From the semantic description, we can automatically
generate mapping rules of mapping languages such as RML [4] or D-REPR [21]
to convert the table data to RDF triples to import into KGs.

Since creating semantic descriptions requires significant effort and exper-
tise [9], there are many studies to address this problem. Generally, they can
be placed into two groups. The first group is supervised methods trained on a
set of known semantic descriptions with given domain ontologies [19,20]. These
methods are difficult to apply to the Wikipedia tables as there is little training
data available. The second group is methods that utilize KGs such as DBpe-
dia [3,16] or Wikidata [13,18] to integrate data from tables. The intuition of
these approaches is that the overlap between entities in a table with entities in
KGs can be used to recover the semantic description of the table. Specifically,
by matching the property values of the overlapped entities with other cells in
the table, they can predict binary relationships between two columns based on
the matched properties and column types using the types of the entitites.

Approaches in the second group can be applied to map the Wikipedia tables
and generally do not require retraining their systems when the KG ontology is
updated. However, they have two main limitations. First, their methods only
consider values inside the tables but not values in the surrounding context. We
found in many tables that the implicit contextual values are critical to under-
standing the semantics of a table. For example, a table about cast members of a
movie and their roles typically does not have the movie in the table data as it is
mentioned in the context. Second, they do not deal with n-ary relations needed
to accurately and fully represent knowledge in the tables. Examples of n-ary
relations are a politician elected to an office position from an electoral district
or sales of a company reported in a particular year.

To address these issues, we present a new approach for semantic modeling
that uses graphs to represent possible (n-ary) relationships in the tables and
collective inference to eliminate spurious relationships on the graphs. Specif-
ically, we construct a candidate graph containing relationships between table
columns and its context values by leveraging possible connections between data
in the table and existing knowledge in Wikidata. Then, incorrect relationships in
the candidate graph are detected and removed using a Probabilistic Soft Logic
(PSL) [1] model. Through collective inference, the PSL model favors links with
high confidence, more informative, and consistent with constraints in the on-
tology and existing knowledge in Wikidata. To assess the effectiveness of our
method, we evaluate our method on a real-world dataset for mapping tables to
Wikidata and on the dataset from the SemTab2020 challenge [6]. These exper-
iments show that our method outperforms the state-of-the-art systems on all
datasets, with an improvement of 28% F1 score on the real-world dataset.



A Graph-based Approach for Inferring Semantic Descriptions of Tables 3

Fig. 1. A table of third presidents of the National Council of Austria with its semantic
description on top. The node wikibase:Statement is used to represent an n-ary rela-
tionship of a position (Third President) and its start and end time. The position is not
in the table but is introduced via an entity (the green node).

The contribution of this paper is a novel graph-based method for semantic
modeling that collectively determines correct relationships between two or more
columns and implicit contextual values using PSL. Our solution offers two key
technologies: (i) an algorithm to construct a graph of plausible semantic descrip-
tions of tables using external knowledge from Wikidata and (ii) a probabilistic
model that utilizes features from external knowledge and related relationships
in the graph for robust relationship prediction.

2 Motivating Example

In this section, we explain the problem by giving an example of mapping a real
table about the third presidents of the National Council of Austria to Wikidata.
This example is also used throughout the paper to illustrate the steps of our
approach. We also interchangeably refer to Wikidata entities, classes (Qnodes),
and properties (Pnodes) either by their labels and ids (e.g., Human (Q5)) or just
by their ids (e.g., Q5).

Figure 1 shows a snippet of the table at the bottom and its semantic de-
scription on the top. In the figure, yellow nodes represent ontology classes, green
nodes represent entities or literals, and edges are ontology properties. For ex-
ample, the link rdfs:label between the node Human (Q5) and the first column
depicts that each cell in the column is a person whose name is specified in the
value of that cell. Similarly, the link P102 between the class Human (Q5) and
Political Party (Q7278) states that each person is a member of the corre-
sponding political party. The property position held (P39) connects the node
Q5 to an entity Q22328268 and columns Entered Office and Left Office to
describe the time each person holds the third president position. This is an n-ary
relationship and is represented by an intermediate wikibase:Statement node.
Note that in Wikidata every claim is represented as a statement, so there is

https://en.wikipedia.org/wiki/President_of_the_National_Council_(Austria)#List_of_third_presidents


4 Binh Vu et al.

a statement node for the relationship P102 of node Q5 and node Q7278. How-
ever, since this is a binary relationship, we have omitted the statement node for
conciseness.

In the table, some cells are linked to Wikipedia articles such as Eva Glawisch-

nig-Piesczek (3rd row, 1st column). By querying Wikidata to obtain a Qnode
associated with the Eva Glawischnig-Piesczek article, we know that she was
the third president of the National Council of Austria (Q22328268)

from 2006 to 2008. As the information appears in the same row of the 2nd
and 3rd columns, this suggests that start time (P580) and end time (P582)

could be the relationships between those columns and of an n-ary relationship
position held (P39) of Q22328268. Following this process, we may discover
in the second row that Thomas Prinzhorn was a second president, and he left
the office in 2002, while there may be no suggestions from data in the 1st row
as Wilhelm Brauneder does not link to any Qnode.

From this example, we observe that matching table data to KGs can suggest
correct semantic descriptions. Yet, predictions solely relying on data matching
can be imprecise. To go beyond simple data matching, we develop a graph-
based approach that uses a probabilistic graphical model to combine evidence
from external knowledge and related possible matched relationships to predict
the most probable semantic description.

3 Building Semantic Descriptions of Tables

The problem of finding semantic descriptions of Wikipedia tables is defined as
follows. Let T be a linked relational table, in which a cell ci,j of row i, column j
may link to entities in a target KG, C = {v1, v2, ..., vn} be a set of values (literals
or entities in KG) found in the surrounding context of T . We want to find the
semantic description sm(T, C) of T with respect to its context C.

Our approach consists of two main steps. The first step is to build a candi-
date graph of relationships between columns and context values. Then, we use
collective inference to identify correct relationships and correct types of columns
containing entities (called entity columns) to create a final semantic description.

Preprocessing Since we use Wikidata as the target KG, the semantic descrip-
tion will be described in terms of the Wikidata ontology. Classes of the ontology
are all Qnodes participating in the subclass of (P279) relationship, and prop-
erties of the ontology are all Wikidata properties and the rdfs:label property.
Also, cells in the Wikipedia tables are not directly linked to Wikidata entities
but have hyperlinks to Wikipedia articles. Thus, we apply a preprocessing step to
automatically convert the hyperlinks to Wikipedia articles to Wikidata entities
using Wikidata sitelinks.

3.1 Constructing Candidate Graphs

To create a candidate graph, we first create a data graph of all possible rela-
tionships between table cells and table context. Then, we summarize the data

https://www.wikidata.org/wiki/Help:Sitelinks


A Graph-based Approach for Inferring Semantic Descriptions of Tables 5

(a) Data graph (b) Candidate graph

Fig. 2. Excerpts of a data graph and a candidate graph built from the data graph for
the table in Figure 1. Some edges are displayed without their full labels for readability.
Grey, blue, yellow, and green nodes are statements, table cells, table columns, and
entities, respectively.

graph to obtain relationships between columns and table context. This approach
makes it easy to handle n-ary relations and infer missing links.1

Constructing Data Graphs Algorithm 1 outlines the process of building a
data graph. To begin with, we add cells of T and items in C as nodes to an empty
graph Gd (line 1-5). Then, we find paths in Wikidata that connect two nodes in
Gd using two functions FindEnt2EntPaths and FindEnt2LiteralPaths (lines 8
- 11). The former function simply returns paths between two entities in Wikidata.
The latter function returns paths from an entity to a literal. Since literals in the
table are not always matched exactly with the corresponding values in the KG,
we ”fuzzy” match literals depending on their types. For example, numbers are
matched if they are within a 5% range; dates are matched if they are equal or
their years are equal (when the literals only have years); strings are matched
if they are the same. The function FindEnt2EntPaths has an extra parameter
max hop controlling the length of discovered paths. If the maximum hop is two,
a path can reach a target literal or entity via an intermediate entity in Wikidata.
If the target entity or literal is found in qualifiers of statements, we also return
extra paths from the source entity to the statements’ values in order to comply
with the Wikidata data model. Note that we only need to find paths between
pairs of nodes that can be linked (line 7). Two nodes are linkable when they are
cells of the same record (i.e., in the same row), or one node is a cell and the
other node is a value in the context.

The discovered paths will then be added to Gd such that the original iden-
tifiers of Wikidata statements and entities are preserved (line 12). This allows
paths of n-ary relationships to be connected automatically as they share the
same Wikidata statements. Figure 2a shows an excerpt of the data graph for the
table in the motivating example after this step.

1 The complexity of algorithms for building graphs is discussed in the appendix.



6 Binh Vu et al.

Algorithm 1: Construct Data Graph

Input: Input table T , Input context C = {v1, ..., vn}, Max hop max hop
Output: the data graph Gd

1 Gd ← empty graph
2 add cells in the table (ci,j ∈ T .cells) as nodes to Gd

3 add values in the context (vi ∈ C) as nodes to Gd

4 newPaths ← []
5 for ni ← Gd.nodes do
6 for nj ← Gd.nodes do
7 if CanLink (ni, nj) then
8 for ei ← ni.linkedEntities do
9 for ej ← nj.linkedEntities do

10 add FindEnt2EntPaths (ei, ej , max hop) to newPaths

11 add FindEnt2LiteralPaths (ei, nj) to newPaths

12 AddPaths (Gd, newPaths)
13 InferMissingLinks (Gd)
14 return Gd

Finally, we run inference on Gd to complete missing links based on logical
rules specified in the Wikidata ontology. Specifically, our ad-hoc rule-based rea-
soner uses sub-property, inverse, and transitive rules. The intuition is that the
final graph Gd after inference should be the same as if we run inference on the
KG, then build the data graph Gd.

Constructing Candidate Graphs With the data graph Gd built from the
previous step, we will summarize it to create a super graph of plausible semantic
descriptions. The step is similar to a reversion of the process that generates an
RDF graph from the semantic description of the table. Specifically, relationships
of cells of two columns or of cells of a column and a context value are consolidated
if they are of the same property. For example, in Figure 2b, relationships P102

between cells of columns 1 and 2 are grouped to be represented as one edge P102
between these columns in the graph.

This idea is implemented in Algorithm 2. It starts by adding columns in the
tables (line 1 - 2) as nodes to Gs. Then, we add literal or entities nodes in Gd

to Gs keeping their original id (line 3). Next, for each pair of nodes (ud and vd)
in Gd in which vd is the value of a property e of ud specified by statement node
stmtd (lines 4 - 7), we find the corresponding nodes of ud and vd in Gs called
us and vs, respectively (line 8). If ud is a cell node, then its corresponding node
us in Gs will be the column node; otherwise, us will be the node of the same id.
Next, we add a new statement node stmts of the relationship e between us and
vs if it does not exist (lines 9 - 11). After that, we add new qualifiers to stmts
based on qualifiers of stmtd with a similar manner (line 13 - 16).



A Graph-based Approach for Inferring Semantic Descriptions of Tables 7

Algorithm 2: Construct Candidate Graph

Input: A data graph Gd, Input table T
Output: the candidate graph Gs

1 Gs ← empty graph
2 add columns in the table T as nodes to Gs

3 add literal or entity nodes in Gd as nodes to Gs, keeping their original id
4 for ud ← Gd.nodes do
5 for vd ← Gd.nodes do
6 if vd is value of a property e of ud then
7 stmtd ← statement of property e linking ud and vd
8 us, vs ← corresponding node of ud, vd in Gs, respectively
9 stmts ← statement of property e linking us and vs

10 if stmts does not exist then

11 add stmts to Gs and link us to vs: us
e−→ stmts

e−→ vs

12 for qualifier q of stmtd do
13 td ← target node of q of stmtd in Gd

14 ts ← corresponding node of td in Gs

15 if the qualifier stmts
q−→ ts does not exist then

16 add qualifier stmts
q−→ ts to Gs

17 return Gs

3.2 Predicting Correct Relationships using PSL

The candidate graph obtained from the previous step can contain spurious re-
lationships. To identify correct relationships, we use PSL [1]. PSL is a machine
learning framework for developing probabilistic graphical models using first-
order logic. A PSL model consists of predicates and rules (logic or arithmetic)
constructed from those predicates. An example of a PSL rule is as follow:

w : CloseFriend(A,B) ∧ CloseFriend(B,C)⇒ Friend(A,C)

where w is weight of the rule, CloseFriend, Friend are predicates, A, B, C
are variables. The example rule can be read as ”if A and B are close friends and
B and C are close friends, then A and C should be friends”. If a rule in PSL
does not have weight, it will be considered as a hard constraint. Given a set of
predicates’ values called observations, PSL substitutes (or grounds) predicates
in the rules with the observations and performs convex optimization to infer
values of the unobserved predicates.

PSL model Table 1 shows the list of main predicates in our PSL model.
CorrectRel(N1, N2, P ) and CorrectType(N,T ) are the target predicates that
we want PSL to infer the values. With these predicates, we design the following
PSL rules.

¬CorrectRel(N1, N2, P1) (1)



8 Binh Vu et al.

¬CorrectType(N,T ) (2)

CanRel(N1, N2, P ) ∧ PosRelFeati(N1, N2, P )⇒ CorrectRel(N1, N2, P ) (3)

CanRel(N1, N2, P ) ∧NegRelFeati(N1, N2, P )⇒ ¬CorrectRel(N1, N2, P ) (4)

CanType(N,T ) ∧ PosTypeFeati(N,T )⇒ CorrectType(N,T ) (5)

CanRel(N0, S, P ) ∧ Statement(S) ∧CanRel(S,N1, P ) ∧CanRel(S,N2, Q)

∧N1 6= N2 ∧ ¬CorrectRel(S,N1, P )⇒ ¬CorrectRel(S,N2, Q)
(6)

CanRel(N1, S1, P1) ∧ Statement(S1) ∧CanRel(S1, N2, P1)

∧CanRel(N1, S2, P2) ∧ Statement(S2) ∧CanRel(S2, N2, P2) (7)

∧ SubProp(P1, P2)⇒ ¬CorrectRel(N1, S2, P2)

CanRel(N1, S1, P1) ∧ Statement(S1) ∧CanRel(S1, N2, P1)

∧CanRel(N1, S2, P2) ∧ Statement(S2) ∧CanRel(S2, N2, P2) (8)

∧ SubProp(P1, P2)⇒ ¬CorrectRel(S2, N2, P2)

CanRel(N1, N2, P1) ∧CanRel(N2, N3, P2) ∧CorrectRel(N2, N3, P2)

∧OneToMany(N2, N3)⇒ ¬CorrectRel(N1, N2, P2)
(9)

Rules 1 and 2 are default negative priors indicating that usually there is no rela-
tionship between two nodes and no type of column, respectively. Rules 3 and 4
state that if there is a link (N1, N2, P ) between two nodes in Gs and there is a fea-
ture supporting or opposing the link, then the relationship (N1, N2, P ) should
be correct or incorrect, respectively. The supporting and opposing features of
(N1, N2, P ) are computed based on the number of rows in which we discover the
relationship (N1, N2, P ) (denoted as match(N1, N2, P )), and the number of rows
in which existing data of the relationship in Wikidata is different from the data
in the table (denoted as difference(N1, N2, P )). The two numbers are normal-
ized in various ways: divided by the number of rows, number of rows that have
entities, or by

∑
p match(N1, N2, p) + difference(N1, N2, p) resulting in different

features. Similar to rule 3, rule 5 also uses features to predict if T is a correct
type of column N . Currently, it uses one feature which is the percentage of rows
containing entities of type T .

Different from the previous rules, rules 6, 7, 8, 9 are applied to a group of
relationships. They are used to enforce consistency of the descriptions with the

Table 1. Predicates in the PSL model

Predicates Meaning

CanRel(N1, N2, P ) A candidate relationship P between nodes N1 and N2

CorrectRel(N1, N2, P ) Denoting if a relationship (N1, N2, P ) is correct

CanType(N,T ) A candidate type T of column N

CorrectType(N,T ) Denoting if the type column N is T

SubProp(P1, P2) Property P1 is a subproperty of P2

Statement(N) Node N in the candidate graph is a statement node

PosRelFeati(N1, N2, P ) Value of feature i backing the relationship (N1, N2, P )

NegRelFeati(N1, N2, P ) Value of feature i opposing the relationship (N1, N2, P )

PosTypeFeati(N,T ) Value of feature i backing the column type (N,T )

OneToMany(N1, N2) A value in column N1 is associated with multiple values
in column N2



A Graph-based Approach for Inferring Semantic Descriptions of Tables 9

Wikidata data model as well as to introduce inductive bias or prior knowledge of
the desired semantic descriptions. Specifically, rule 6 states that if a property of
a statement is inferred to be false, then the statement’s qualifiers should also be
false. Rules 7 and 8 favor fine-grain properties. Finally, rule 9 prefers that prop-
erties’ values of non-subject entities should have a one-to-one correspondence
to the entities. The non-subject entities are defined as entities with incoming
relationships from other entities in the table (i.e., not the main entities that the
table is about).

We use the same weight (w = 2) for all rules, except that the default negative
priors (rules 1 and 2) should have less weight as instructed in PSL tutorial
(w = 1); rules that introduce preferences should have very small weights (rules 7
and 8 have w = 0.1); and rules that act as constraints should have very high
weights (rule 9 has w = 100).

Inference and Post-processing From Gs, we extract values of all predicates
in the PSL model except the CorrectRel and CorrectType predicates.
Then, we run PSL inference to determine the values of the two predicates which
represent the probabilities of links between nodes in Gs and types of columns,
respectively. Values that have probabilities lower than a chosen threshold (0.5)
are considered incorrect and are removed.

After running inference, there could be more than one correct link between
two nodes. For instance, the PSL model predicts that capital (P36), capital
of (P1376), or located in...(P131) are correct relationships for Capital

City and Country. Thus, we run a post-processing step that selects only one
path between two nodes such that it maximizes the sum of probabilities of rela-
tionships in the final semantic description while maintaining the tree structure
of the description.

4 Evaluation

4.1 Datasets for Semantic Modeling

Our objective is to assess the ability of our method to infer correct semantic de-
scriptions of linked tables. There are several standard datasets for benchmarking
this problem, such as T2D [17] or Limaye [10]. However, these datasets are not
linked to Wikidata; they are relatively simple and do not capture the complexity
of the semantic modeling problem in Wikipedia tables. Therefore, we introduce
a new dataset of 250 Wikipedia tables, called 250WT, with their semantic de-
scriptions built using the Wikidata ontology.

The new dataset’s tables are selected from a pool of 2 million relational
Wikipedia tables with the following procedure to ensure good coverage over
multiple domains and produce high-quality unambiguous annotations. First, we
filter to keep tables with at least one relationship between columns and have
at least one column with at least 8 links2. Each table is then assigned to a

2 This requirement is to help reduce ambiguity and speed up the annotation process.

https://psl.linqs.org/wiki/master/Rule-Specification.html#priors


10 Binh Vu et al.

Table 2. Details of the 250WT dataset. New data is the data that is extracted from
tables but is not in Wikidata.

Average number of rows 46.34

Average number of columns 5.536

% new relationships (21235/33336) 63.7%

% new entities (3717/21007) 17.7%

% missing entities’ type (996/21007) 4.7%

(sampled) % new relationships (after fixing entity linking (FEL)) (1464/2241) 65.3%

(sampled) % new relationships (before FEL) (1560/2241) 69.6%

(sampled) % incorrect relationships (after FEL) (3/2241) 0.13%

(sampled) % new or missing type entities (after FEL) (214/1393) 15.4%

(sampled) % new or missing type entities (before FEL) (260/1393) 18.7%

category for stratified sampling to select a maximum of 30 tables per category.
The category is the most popular ontology class of the QNode’s classes associated
with the Wikipedia article of the table. For example, tables in Wikipedia list
articles will be assigned to category Wikimedia list article (Q13406463).
We initially drew a sample size of 500, then two annotators annotated tables in
each category one at a time (ordered by category size) until they agreed on the
same semantic descriptions. However, we stopped the manual annotation process
when we reached 250 tables as the cost exceeded our budget.

Table 2 shows the details of the 250WT dataset. If we extract data from
the tables using their semantic descriptions, we obtain 33,336 new relationships
and 21,007 new entities or entities’ types. By comparing the extracted data with
Wikidata’s data, we found that 63.7% and 17.7% of relationships and entities
are not in Wikidata, respectively. As the comparison is computed automatically,
the new data may include data that is already in Wikidata (due to errors in
entity linking) or is incorrect. Therefore, we sampled 10% (24/237) of the tables
that have new data to manually check and fix the linked entities, then verified
the extracted relationships. We found that there are 46 (3.3%) incorrectly linked
or not linked entities and only 3 (0.13%) incorrect relationships in the tables.
This result shows that Wikipedia tables contain new knowledge and can be very
useful to enhance Wikidata.

Finally, to compared with other systems that match tables to Wikidata, we
also use a synthetic dataset from the final round of the SemTab 2020 Chal-
lenge [6]. This dataset contains approximately 22 thousand tables generated au-
tomatically from Wikidata. This dataset also comes with a list of target columns
for which we need to predict the types and a list of target columns’ pairs for which
we need to predict the relationships. However, there are some entity columns or
columns’ pairs in the tables that should be annotated but are not due to not
being in the target lists. Thus, for this dataset, we follow the SemTab2020 eval-
uation protocol to only evaluate the predictions on the items of the two lists.



A Graph-based Approach for Inferring Semantic Descriptions of Tables 11

Fig. 3. Example for CPA metric (left is ground truth and right is prediction). Green
and red edges are correct and incorrect, respectively.

4.2 Experiment Settings

Evaluation metrics We assess the predicted semantic descriptions’ quality in
two different tasks: assigning an ontology class to a column (called an entity
column) and predicting relationships in the table.

The first task is the Column-Type Annotation (CTA) task in the SemTab
2020 Challenge and is evaluated using the same metrics: approximations of pre-
cision, recall, and F1 score. The difference between the approximate metric with
its original version is the use of a scoring function, score(·), to calculate the
correctness of an annotation. Let d(x) be the shortest distance of the predicted
class to the ground truth (GT) class. d(x) is 0, 1 if the predicted class is equal to
GT, or parent or child of GT, respectively. Then, score(x) = 0.8d(x) if d(x) ≤ 5
and x is a correct annotation or an ancestor of GT; score(x) = 0.7d(x) if d(x) ≤ 3
and x is a descendent of GT; otherwise, score(x) = 0.

The second task is slightly different from the Column-Property Annotation
(CPA) task in the SemTab 2020 challenge due to n-ary relationships. As shown
in Figure 3, despite the fact that the relationship (P1923, P1351) between match

and goals (home) is the same as in the ground truth, it is not the correct
relationship as it belongs to a different team. Inspired by the idea in [19], we
find the best mapping between statement nodes in a predicted description to
statement nodes in the ground truth description that maximizes the number of
overlapping edges between them. Then, we measure the approximate precision,
recall, and F1 of edges as in the CTA task. For example, in Figure 3, the best
mapping is {n3 → n1, n4 → n2} as it returns 5 overlapping edges. We have
two incorrect edges: 〈n3, P1351, goals (away)〉 and 〈n4, P1351, goals (home)〉.
Hence, the approximate precision and recall are 2

7 .

Baselines We compare our method, named GRAMS, with two state-of-the-art
(SOTA) systems: MantisTable [3] and BBW [18] in mapping tables to Wikidata.
MantisTable achieves SOTA results on several gold-standard benchmark datasets
on mapping to DBpedia. BBW is among the top-3 winners3 of the SemTab
2020 challenge and finished in second place in the final round (within 0.1 - 0.2%
average F1 score from the top performer). To ensure a fair assessment, we modify
the inputs of the SOTA systems to use linked relational tables (i.e., tables’ cells
are already linked to entities in Wikidata) instead of plain relational tables.

3 We could not evaluate the other winning systems as we were unable to get access to
their code and the papers do not describe them precisely.

https://www.aicrowd.com/challenges/semtab-2020/problems/column-type-annotation-cta-challenge


12 Binh Vu et al.

Table 3. Performance comparison with baseline systems on CPA and CTA tasks.
MantisTable* and BBW* are given correct tables’ subject column.

Dataset Method
CPA CTA

Precision Recall F1 Precision Recall F1

250WT

MantisTable 0.535 0.442 0.484 0.928 0.331 0.488

MantisTable* 0.559 0.569 0.564 0.940 0.394 0.556

BBW 0.796 0.123 0.214 0.850 0.233 0.367

BBW* 0.740 0.559 0.638 0.759 0.777 0.768

GRAMS-ST 0.526 0.681 0.594 - - -

GRAMS 0.824 0.650 0.726 0.819 0.813 0.816

SemTab2020

MantisTable 0.985 0.976 0.981 0.977 0.800 0.880

BBW 0.996 0.995 0.995 0.980 0.980 0.980

GRAMS-ST 0.990 0.989 0.990 - - -

GRAMS 0.996 0.994 0.995 0.982 0.981 0.982

In addition, we also develop another baseline, named GRAMS-ST, for com-
parison on the CPA task in which we replace the PSL inference with a Steiner
Tree algorithm [19]. The idea of using the Steiner Tree algorithm is to find a
semantic description of a table such that the total weight of relationships is min-
imized. The weight of a relationship is defined as the inverse of the number of
rows in which we discover the relationship using Wikidata’s data. Hence, it is
similar to choosing the most popular relationship.

The evaluated datasets and our source code are available on Github4.

4.3 Performance Evaluation

Table 3 shows that GRAMS outperforms the baseline systems on all tasks in all
datasets, except on the CPA task of SemTab2020, where we have similar result
to BBW. We report GRAMS’s performance as the average of 5 independent
runs (standard deviations less than 0.001) since our PSL model is a probabilistic
model. In the 250WT dataset, GRAMS exceeds the SOTA baselines by 24.2%
and 32.8% of F1 score on the CPA and CTA tasks, respectively. GRAMS also
surpasses our alternative version (GRAMS-ST) by 13.2% F1 score on the CPA
task. This demonstrates that the PSL model, which takes into account both
likelihood of the candidate predictions and contradicting evidence, is more robust
than a model based on selecting the most frequent relationship.

The superior performance of GRAMS over the SOTA baselines on the 250WT
dataset comes from two main sources. First, MantisTable and BBW needs to
identify a subject column from which we find relationships to other columns.
Hence, their performance is significantly affected if the results of the subject
column detection step are incorrect. If we give MantisTable and BBW the correct
subject columns, we observe an increase in their F1 scores on the CPA task by
8% and 42.4%, and on the CTA task by 6.8 and 40.1%, respectively. Second,

4 https://github.com/usc-isi-i2/GRAMS/releases/tag/iswc-2021

https://github.com/usc-isi-i2/GRAMS/releases/tag/iswc-2021


A Graph-based Approach for Inferring Semantic Descriptions of Tables 13

Table 4. Average running time (seconds) per table of GRAMS in comparison with
baseline systems.

Dataset GRAMS MantisTable BBW

250WT 1.155 0.627 2.674

SemTab2020 0.273 0.136 0.550

tables in the 250WT dataset are more challenging. Many tables are denormalized
tables, which include more than one type of entities, require n-ary relationships
or context values to model their data. Thanks to the candidate graph and the
PSL model, GRAMS outperforms the SOTA baselines by 8.8% F1 score even
when they receive the correct subject columns of the tables.

However, GRAMS and the baselines do not perform well on tables that have
little overlapping with Wikidata’s data. For example, GRAMS can not predict
correct semantic description of a table in 250WT dataset about athletics par-
ticipating in a Summer Universiade and their ranking since Wikidata do not
have data of the Universiade’s participation. This explains the significant gap
between the F1 score on the SemTab2020 dataset and the 250WT dataset.

4.4 Running Time Evaluation

In this experiment, we evaluate GRAMS’s running time against the baseline
systems: MantisTable and BBW. The experiment is run on a single machine
with Intel E5-2620v4 and 32GB RAM. We use a local key-value database to
store Wikidata to avoid the network overhead in our experiment. The results
are reported in Table 4. MantisTable is the fastest system and BBW is the
slowest system among the three. Although our system is more complex than the
baselines and is not well optimized, it has a reasonable running time especially
on the SemTab2020 dataset, which contains 22127 tables. This demonstrates
that our system can handle large datasets.

5 Related Work

Understanding semantics of data sources is an important task for data integra-
tion [5] and has attracted much research over the years. There are several prob-
lem formulations to address this task such as the schema matching [15] problem,
which finds a correspondence between the current schema of a data source and
the target schema, or semantic labeling [14,7], which assigns each attribute in
a data source with one of the predefined semantic types or concepts. However,
these problems are fundamentally different from the semantic modeling problem
as they do not describe relationships of source attributes explicitly. Hence in
the rest of this section, we will only discuss previous work that annotates both
concepts and relationships of source attributes.



14 Binh Vu et al.

In general, there are two lines of research in semantic modeling, which target
two different use cases. The first use case is for users who have an ontology suit-
able for their own problem and want to normalize their data sources according
to the ontology. Methods in this line of research often take two inputs: a target
ontology and a training set of known semantic descriptions. Taheriyan et al. [19]
build a semantic description by finding a Steiner Tree that connects the data
source’s attributes, in which the Steiner Tree is a subgraph of the graph created
by integrating known semantic descriptions in the training set. As the Steiner
Tree problem is NP-hard, they use an approximation algorithm to find the tree
that has high frequency relationships, fewer nodes (concise), and highly over-
lapped with existing semantic descriptions (coherence). Vu et al. [20] developed
a probabilistic graphical model (PGM) for computing the likelihood of a seman-
tic description of a data source and use it as a scoring function to search for
the most probable semantic description of a target data source. To distinguish
between good and bad semantic descriptions, the PGM exploits relationships
within the data and structural patterns to enforce concepts consistent with the
semantic description. Despite being flexible on choosing a target ontology, these
approaches suffer from the cold start problem: users need to label enough data
sources before the systems can achieve good performance. This issue is more
profound with a large ontology as they would need lots of training data. Thus,
making these methods difficult to apply to Wikipedia tables that span many
different domains.

The second use case is for harvesting structure information from millions of
public web tables to publish to a knowledge graph (KG) for people to use. Gener-
ally, approaches in this line of research leverage existing knowledge in the target
KG, so they are less hungry for training data. Their common methodology is to
identify KG entities in a table (Entity Linking - EL) and match the properties
of entities with values in the table to find column types (CTA) and binary rela-
tionships between columns (CPA). As the three tasks (EL, CTA, and CPA) are
interdependent, Limaye et al. [10] use a probabilistic graphical model to solve
them jointly. Yet, the graphical model is expensive as the number of variables
in the models increases linearly with the size of the table, making it difficult
to converge on an optimal solution. Mulwad et al. [11] improve it by present-
ing a new approximate inference algorithm named semantic message passing.
However, their methods do not produce a complete semantic description as they
ignore non-entity columns in the tables. Comparing to their graphical models,
the size of our PSL model is not proportional to the number of rows of the ta-
bles. Our PSL model goes beyond selecting semantic description that maximizes
matching scores; it incorporates structural patterns and penalizes relationships
that are inconsistent with constraints in the ontology and existing knowledge in
the KG. Also, PSL performs inference by solving a convex optimization problem
while their approaches rely on approximate message passing algorithms.

Later work expands the problem setting to include literal columns. Ritze et
al. [17] first identify a subject column of a table and candidate entities in the
column, then find the candidate relationships between the subject column with



A Graph-based Approach for Inferring Semantic Descriptions of Tables 15

other columns in the table. They iteratively update the candidate entities and
candidate relationships until there is no additional change in the entity matching
score with the relationship matching score. Zhang et al. [22] also use an iterative
approach to refine entity linking results to be consistent with the annotated
column types and the table’s domain, estimated using a bag-of-words method,
and then predict column relationships. Nguyen et al. [12], winner of the SemTab
2019 challenge, also recalibrate the results of three tasks (EL, CTA, and CPA)
after their first initial prediction. Current state-of-the-art results on the T2Dv2
and Liyame2000 standard datasets are achieved by Cremaschi et al. [3], which
combine and extend features from previous work to improve the accuracy of
subject column detection, and the three tasks.

Wikidata, although being popular in the Semantic Web and AI communities,
is not used for the semantic modeling problem prior to the SemTab 2020 chal-
lenge. However, they do not leverage Wikidata to its full extent (e.g., qualifiers
are excluded from the evaluation). New techniques used in the winning sys-
tems [13,2,8,18] of the challenge mainly depend on scoring functions to rank the
matched results or fuzzy search methods to retrieve better candidate entities. In
comparison to our work, most of the aforementioned methods [17,22,3,13,2,8,18]
make an assumption about the table structure: a table has only one subject col-
umn, and all relationships in the table are between the subject column and other
columns. This limits the ability to predict relationships between non-subject
columns, which are often found in denormalized tables (e.g., two tables about
books and authors are merged into one). As our approach does not make this
assumption, not only can we detect relationships between non-subject columns
but we also avoid the cascaded error from the subject column detection phase.
Furthermore, we broaden the scope of the problem to build semantic descriptions
containing n-ary relationships and implicit contextual values. Instead of using
an iterative approach to solve the CTA and CPA tasks, our solution using PSL
enables us to express complex dependencies between columns and their rela-
tionships and solve the tasks jointly through convex optimization. Therefore, we
were able to obtain better performance than previous state-of-the-art methods.

One limitation of our approach is that it is unable to build the semantic
description of a table in which each row of the table has a different property.
For example, a table about awards and nominees of films has a ”result” column
describing whether a film won the award or not. The property award received

(P166) should be used when the film won; otherwise, we should use the property
nominated for (P1411). Currently, none of the previous work on the semantic
modeling problem can address this problem.

6 Conclusion and Future Work

In this paper, we present a novel graph-based approach for building semantic
descriptions of Wikipedia Tables using Wikidata. Our approach constructs a
candidate graph of possible relationships between columns in the table and uses
collective inference to identify correct relationships and types. The evaluation



16 Binh Vu et al.

shows that by using graphs to represent relationships and collective inference,
our approach is robust compared to state-of-the-art systems and can handle
tables with complex descriptions.

This work focuses on Wikipedia relational tables, in which we leverage ex-
isting hyperlinks. As many Web tables do not have links, we plan to extend our
method to incorporate an entity disambiguation module to link cells in tables
to entities in Wikidata. Another future direction of our work is to support non-
relational tables by detecting layout and extracting the table data to a relational
format.

We also plan to use our approach to help address the cold start problem of
supervised semantic modeling systems. Specifically, we can apply our method
to annotate millions of Wikipedia tables to create a large labeled dataset. This
dataset can be used for weakly supervised training of semantic modeling systems
on custom domain ontologies provided by the users.

Acknowledgements

This research was sponsored by the Army Research Office and the Defense Ad-
vance Research Projects Agency and was accomplished under Grant Number
W911NF-18-1-0027. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the Army Research Office and Defense
Advance Research Projects Agency or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

References

1. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss markov random fields
and probabilistic soft logic. J. Mach. Learn. Res. 18(1), 3846–3912 (Jan 2017)

2. Chen, S., Karaoglu, A., Negreanu, C., Ma, T., Yao, J.G., Williams, J., Gordon,
A., Lin, C.Y.: Linkingpark: An integrated approach for semantic table interpre-
tation. Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
(SemTab). CEUR-WS. org (2020)

3. Cremaschi, M., De Paoli, F., Rula, A., Spahiu, B.: A fully automated approach to
a complete semantic table interpretation. Future Generation Computer Systems
112, 478 – 500 (2020)

4. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
Rml: A generic language for integrated rdf mappings of heterogeneous data. 7th
Workshop on Linked Data on the Web, Proceedings 1184 (2014)

5. Doan, A., Halevy, A., Ives, Z.: Principles of data integration. Elsevier (2012)
6. Hassanzadeh, O., Efthymiou, V., Chen, J., Jiménez-Ruiz, E., Srinivas, K.: SemTab

2020: Semantic Web Challenge on Tabular Data to Knowledge Graph Matching
Data Sets (Nov 2020)

7. Hulsebos, M., Hu, K., Bakker, M., Zgraggen, E., Satyanarayan, A., Kraska, T.,
Demiralp, c., Hidalgo, C.: Sherlock: A deep learning approach to semantic data type



A Graph-based Approach for Inferring Semantic Descriptions of Tables 17

detection. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. p. 1500–1508. KDD ’19, Association for
Computing Machinery, New York, NY, USA (2019)

8. Huynh, V.P., Liu, J., Chabot, Y., Labbé, T., Monnin, P., Troncy, R.: Dagobah:
Enhanced scoring algorithms for scalable annotations of tabular data. Semantic
Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab). CEUR-
WS. org (2020)

9. Knoblock, C.A., Szekely, P., Fink, E., Duane Degler, D.N., Sanderson, R., Blanch,
K., Snyder, S., Chheda, N., Jain, N., Krishna, R.R., Sreekanth, N.B., Yao, Y.:
Lessons learned in building linked data for the american art collaborative. In:
ISWC 2017 - 16th International Semantic Web Conference (2017)

10. Limaye, G., Sarawagi, S., Chakrabarti, S.: Annotating and searching web tables
using entities, types and relationships. Proc. VLDB Endow. 3(1-2), 1338–1347 (Sep
2010)

11. Mulwad, V., Finin, T., Joshi, A.: Semantic message passing for generating
linked data from tables. In: International Semantic Web Conference. pp. 363–378.
Springer (2013)

12. Nguyen, P., Kertkeidkachorn, N., Ichise, R., Takeda, H.: Mtab: Matching tabular
data to knowledge graph using probability models. CoRR abs/1910.00246 (2019)

13. Nguyen, P., Yamada, I., Kertkeidkachorn, N., Ichise, R., Takeda, H.:
Mtab4wikidata at semtab 2020: Tabular data annotation with wikidata. Seman-
tic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab).
CEUR-WS. org (2020)

14. Pham, M., Alse, S., Knoblock, C., Szekely, P.: Semantic labeling: A domain-
independent approach. In: ISWC 2016 - 15th International Semantic Web Con-
ference (2016)

15. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
the VLDB Journal 10(4), 334–350 (2001)

16. Ritze, D., Bizer, C.: Matching web tables to dbpedia-a feature utility study. context
42(41), 19–31 (2017)

17. Ritze, D., Lehmberg, O., Bizer, C.: Matching html tables to dbpedia. In: Proceed-
ings of the 5th International Conference on Web Intelligence, Mining and Seman-
tics. pp. 1–6 (2015)

18. Shigapov, R., Zumstein, P., Kamlah, J., Oberländer, L., Mechnich, J., Schumm, I.:
bbw: Matching csv to wikidata via meta-lookup. In: CEUR Workshop Proceedings.
vol. 2775, pp. 17–26. RWTH (2020)

19. Taheriyan, M., Knoblock, C.A., Szekely, P., Ambite, J.L.: Learning the semantics
of structured data sources. Journal of Web Semantics 37-38, 152–169 (2016)

20. Vu, B., Knoblock, C., Pujara, J.: Learning semantic models of data sources using
probabilistic graphical models. In: The World Wide Web Conference. pp. 1944–
1953. WWW ’19, ACM, New York, NY, USA (2019)

21. Vu, B., Pujara, J., Knoblock, C.A.: D-repr: A language for describing and mapping
diversely-structured data sources to rdf. In: Proceedings of the 10th International
Conference on Knowledge Capture. pp. 189–196 (2019)

22. Zhang, Z.: Effective and efficient semantic table interpretation using tableminer+.
Semantic Web 8(6), 921–957 (2017)


	A Graph-based Approach for Inferring Semantic Descriptions of Wikipedia Tables

